02407 Stochastic Processes 2011-12-05
DAME/dame

Solution for exercise 9.3.1 in Karlin and Pinsky

We have to calculated $P(X(t)=x, Y(t)=y)$. Let $Z(t)$ be the number of arrivals until time t. then we know

$$
P(X(t)=x, Y(t)=y)=P(X(t)=x, Z(t)-[X(t)-X(0)]=y)
$$

Without loss of generality we can choose $X(0)=0$ and get

$$
\begin{aligned}
P(X(t)=x, Y(t)=y) & =P(X(t)=x, Z(t)-[X(t)-X(0)]=y) \\
& =P(Z(t)-X(t)=y \mid X(t)=x) P(X(t)=x) \\
& =P(Z(t)=x+y) P(X(t)=x) \\
& =\frac{(\lambda t)^{x+y}}{(y+x)!} e^{-\lambda t} \cdot \frac{\mu\left(A_{t}\right)^{x} e^{\mu\left(A_{t}\right)}}{x!}
\end{aligned}
$$

The result for $P(X(t)=x)$ comes from p. 466 in Karlin and Pinsky

