02407 Stochastic Processes 2011-12-05
DAME/dame

Solution for exercise 9.2.6 in Karlin and Pinsky

We have to find the probabilty that under stationarity $P\left(X_{\pi}(t)>c\right)<0.001$. We know:

$$
\begin{aligned}
P\left(X_{\pi}(t)>c\right) & =1-P\left(X_{\pi}(t) \geq c\right) \\
& =1-\sum_{k=0}^{c} \pi_{k} \\
& =1-\sum_{k=0}^{c}(1-\rho) r h o^{k}
\end{aligned}
$$

Using this we can calculate c

$$
\begin{array}{r}
P\left(X_{\pi}(t)>c\right)<0,001 \\
\Leftrightarrow 1-\sum_{k=0}^{c}(1-\rho) r h o^{k}<0,001 \\
\Leftrightarrow \sum_{k=0}^{c}(1-\rho) r h o^{k}>0,999 \\
\Leftrightarrow 1-\rho^{c+1}>0,999 \\
\Leftrightarrow \rho^{c+1}<0,001 \\
\Leftrightarrow \quad c<\frac{\ln (0,001)}{\ln (\rho)}-1
\end{array}
$$

