02407 Stochastic Processes 2011-11-14
DAME/dame

Solution for exercise 8.4.5 in Karlin and Pinsky

We can use Theorem 8.1 Define $T_{0 b}=\min \{t \geq 0 ; X(t)=0$ or $X(t)=b\}$ and we get:

$$
P\left(X\left(T_{0} b=b \mid X(0)=x\right)=\frac{e^{-2 \mu x / \sigma^{2}}-1}{e^{-2 \mu b / \sigma^{2}}-1}\right.
$$

This is the probabilty that the absorbed Brownian motion ever reachers the height $b>x$

