Solution for exercise 8.4.1 in Karlin and Pinsky

$$
P\left(\max _{t} B(t)>a+b t\right)=P(\max (B(t)-b t)>a)
$$

Define $X(t):=B(t)-b \cdot t$ than it is a Brownian motion with drift. Furthermore we know $\sigma=1$ and $\mu=-b$ and with this we can use theorem 8.1 in Karlin and Pinsky on page 420. Define $T_{\bar{b} a}=\min \{t \geq 0 ; X(t)=a$ or $X(t)=\tilde{b}\}$

$$
\begin{aligned}
P\left(\max _{t} B(t)>a+b t\right) & =P(X(t)>a) \\
& =\lim _{\tilde{b} \rightarrow-\infty} P\left(X\left(T_{\tilde{b} a}\right)=a\right) \\
& =\lim _{\tilde{b} \rightarrow-\infty} \frac{1-e^{2 b \tilde{b} / \sigma^{2}}}{e^{2 b a / \sigma^{2}}-e^{2 b \tilde{b} / \sigma^{2}}} \\
& =e^{-2 b \cdot a}
\end{aligned}
$$

