Solution for exercise 8.3.3 in Karlin and Pinsky

Define $B^{0}(t):=B(t)-t B(1)=B(t)-B(0)-t(B(1)-B(0): 0 \leq t \leq 1$ since the increments of a brownien motion are normal distributed we know that $B^{0}(t)$ is normal distributed.
Knowing this, using the definition of a Gaussion Process on page 398 Karlin and Pinsky, we can argue that $B^{0}(t)$ is a Gaussian process. We know also, the Brownian motion is a Gaussian process.
In order to show independence of $B^{0}(t)$ and $B(1)$ it leaves us to show:

$$
\begin{aligned}
E\left[B^{0}(t) B(1)\right]= & 0 \\
& \text { but } \\
E\left[B^{0}(t) B(1)\right]= & E\left[B(t) B(1)-t B(1)^{2}\right] \\
= & t-t \cdot 1=0
\end{aligned}
$$

Therefore are $B^{0}(t)$ and $B(1)$ independent.

0.1 a)

To show that $B^{0}(t)$ is a Brownian bridge we have only to show that $E\left[B^{0}(t)=\right.$ 0 as well as $\operatorname{Var}\left[B^{0}(t)=t(1-t)\right.$, since we already know that it is Normal
distributed.

$$
\begin{aligned}
E\left[B^{0}(t)\right] & =E[B(t)-t B(1)] \\
& =E[B(t)]-t E B(1) \\
& =0-t \cdot 0=0 \\
\operatorname{Var}\left[B^{0}(t)\right] & =E\left[\left(B^{0}(t)\right)^{2}\right]-E\left[B^{0}(t)\right]^{2} \\
& =E\left[(B(t)-t B(1))^{2}\right. \\
& =E\left[(B(t))^{2}-2 t B(1) B(t)+t^{2} B(1)\right] \\
& =t-2 t+t^{2} \cdot 1 \\
& =t(1-t)
\end{aligned}
$$

After all $B^{0}(t)$ is a Brownian bridge.

$0.2 \mathrm{~b})$

now we have to calculate the covariance function $\operatorname{Cov}\left[B^{0}(s) B^{0}(t)\right]=E\left[B^{0}(s) B^{0}(t)\right]$. Without loss of generallity, we can assume $s \leq t$.

$$
\begin{aligned}
E\left[B^{0}(s) B^{0}(t)\right] & =E[(B(s)-s B(1))(B(t)-t B(1))] \\
& =E[B(s) B(t)]-E[s B(1) B(t)]-E[B(s) t B(1)]-E\left[s t B(1)^{2}\right] \\
& =s-s \cdot t-s \cdot t-s \cdot t \\
& =s(1-t)
\end{aligned}
$$

For the general case we get $\operatorname{Cov}\left[B^{0}(s) B^{0}(t)\right]=\operatorname{mins}, t(1-\operatorname{maxs}, t)$

