## Solution for exercise 8.3.1 in Karlin and Pinsky

We are supposed to consider the random variable $R(t)=\sqrt{B_{1}(t)^{2}+B_{2}(t)^{2}}$ with $B_{i}(t)$ is a standard Brownian motion. Furthermore we know $B_{i}(t) \sim$ $N(0, t)$. since the Brownian motions are independent we can easily derive the joint density:

$$
\begin{aligned}
f_{B_{1}(t), B_{2}(t)}(x, y) & =f_{B_{1}(t)} \cdot f_{B_{2}(t)}=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} x^{2}} \cdot \frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} y^{2}} \\
& =\frac{1}{2 \pi t} e^{-\frac{1}{2 t}\left(x^{2}+y^{2}\right)}
\end{aligned}
$$

With $r=\sqrt{x^{2}+y^{2}}$ we get $r^{2}=x^{2}+y^{2}$. Furthermore the circumference of a circle with radius $r$ is $2 \pi r$. Since $f_{B_{1}(t), B_{2}(t)}(x, y)$ is almost constant om the circle $f_{B_{1}(t), B_{2}(t)}(x, y)$ we get

$$
\begin{aligned}
f_{R(t)}(r) & =f_{B_{1}(t), B_{2}(t)}(x, y) \cdot 2 \pi r=\frac{1}{2 \pi t} e^{-\frac{1}{2 t} r^{2}} \\
& =\frac{r}{t} e^{-\frac{1}{2 t} r^{2}}
\end{aligned}
$$

Calculating the expectation is then straight forward

$$
\begin{aligned}
E[R(t)] & =\int_{0}^{\infty} r \cdot f_{R(t)}(r) d r \\
& =\int_{0}^{\infty} r \cdot \frac{r}{t} e^{-\frac{1}{2 t} r^{2}} d r \\
& =\frac{1}{t} \int_{0}^{\infty} r^{2} e^{-\frac{1}{2 t} r^{2}} d r \\
& =\frac{\sqrt{2 \pi t}}{t} \int_{0}^{\infty} r^{2} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} r^{2}} d r
\end{aligned}
$$

Due to symmetry we can write $\int_{0}^{\infty} r^{2} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} r^{2}} d r=\frac{1}{2} \int_{-\infty}^{\infty} r^{2} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} r^{2}} d r$. The integral on the right hand side is the variance of a $N(0, t)$ distributed
random variable and we get

$$
\begin{aligned}
E[R(t)] & =\frac{\sqrt{2 \pi t}}{2 t} \int_{-\infty}^{\infty} r^{2} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} r^{2}} d r \\
& =\frac{\sqrt{2 \pi t}}{2 t} \cdot t=\sqrt{\frac{\pi t}{2}}
\end{aligned}
$$

