02407 Stochastic Processes 2011-11-8
DAME/dame

Solution for exercise 8.1.1 in Karlin and Pinsky

Define $T=T_{a, b}=\min (t \geq 0, B(t)=-a$ or $B(t)=b)$. We know $E\left[\xi_{i}\right]=0$ and $\operatorname{Var}\left[\xi_{i}\right]=1$ therefore we can try to aproximate $B(t)$ with $\frac{S_{[n t]}}{\sqrt{n}}$.

$$
\begin{aligned}
E[T] & \left.=E\left[\lim _{n \rightarrow \infty} \min \left(t \geq 0, \frac{S_{[n t]}}{\sqrt{n}}=-a \text { or } \frac{S_{[n t]}}{\sqrt{n}}\right)=b\right)\right] \\
& \left.=E\left[\lim _{n \rightarrow \infty} \min \left(t \geq 0, S_{[n t]}=-a \sqrt{n} \text { or } S_{[n t]}\right)=b \sqrt{n}\right)\right]
\end{aligned}
$$

Using the result from section 3.5.3 this leaves us with solving:

$$
\begin{aligned}
& \min _{t}[n t]=a b n \\
& \Leftrightarrow t=a b
\end{aligned}
$$

and with this we get; $\mathrm{E}[\mathrm{T}]=\mathrm{ab}$

