Solution for exercise 7.5.4 in Karlin and Pinsky

Let Z_{1} and Z_{2} be the lifetime of light bulb one and two.
With $Y_{1}=\min \left(Z_{1}, Z_{2}\right)$ and $X_{1}=\max \left(Z_{1}, Z_{2}\right)$ we can use equation 7.27 from page 373 to answer the question.

$0.1 \quad a)$

We know, the minimum of two $\exp (\lambda)$ distributed Variables, is $\exp (2 \lambda)$ distributed and the maximum of two $\exp (\lambda)$ is generalised Erlang- 2^{1} distributed

$$
\begin{aligned}
\lim _{t \rightarrow \infty} p(t) & =\frac{E\left[Y_{1}\right]}{E\left[X_{1}\right]} \\
& =\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}+\frac{1}{\lambda}} \\
& =\frac{1}{3}
\end{aligned}
$$

So the lazy professor sits one third of the time in an office with two lit light bulbs and two thirds of the time in a half lit office.

[^0]
$0.2 \mathrm{~b})$

This time we are dealing with independent uniform distributions. We know $F_{Z_{1}}(x)=x$ as well as $F_{Z_{2}}(x)=x$. Furthermore we get

$$
\begin{aligned}
F_{Y_{1}}(x) & =P\left(\min \left(Z_{1}, Z_{2}\right) \leq x\right)=1-P\left(\min \left(Z_{1}, Z_{2}\right)>x\right) \\
& =1-P\left(Z_{1}>x\right) \cdot P\left(Z_{2}>x\right)=1-(1-x)^{2}=2 x-x^{2} \\
\Rightarrow f_{Y_{1}}(x) & =\frac{d F_{Y_{1}}(x)}{d x}=2-2 x \\
\Rightarrow E\left[Y_{1}\right] & =\int_{0}^{1} x \cdot f_{Y_{1}}(x) d x=\int_{0}^{1} 2 x-2 x^{2} d x \\
& =\left[x^{2} \frac{2}{3} x^{3}\right]_{0}^{1}=\frac{1}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
F_{X_{1}}(x) & =P\left(\max \left(Z_{1}, Z_{2}\right) \leq x\right)=P\left(Z_{1} \leq x\right) \cdot P\left(Z_{2} \leq x\right)=x^{2} \\
\Rightarrow f_{X_{1}}(x)=2 x & \\
\Rightarrow E\left[X_{1}\right] & =\int_{0}^{1} 2 x^{2} d x=\frac{2}{3} \\
\Rightarrow \lim _{t \rightarrow \infty} p(t) & =\frac{E\left[Y_{1}\right]}{E\left[X_{1}\right]}=\frac{1}{2}
\end{aligned}
$$

In this case the office is half lit, half of the time.

[^0]: ${ }^{1}$ A generalised Erlang distribution is the distribution of a sum of a independent exponential random variables with possibly different intensites

