02407 Stochastic Processes 2011-9-27
DAME/dame

Solution for exercise 6.3.3 in Karlin and Pinsky

Since we start with the limiting distribution we know

$$
E[V(l)]=0 \cdot(1-\pi)+1 \cdot \pi \forall l \geq 0
$$

Furthermore

$$
\begin{aligned}
E[V(s) V(t)] & =E[V(s) V(t) \mid V(s)=0] P(V(s)=0)+E[V(s) V(t) \mid V[s)=1] P(V(s)=1) \\
& =0 \cdot P(V(s)=0)+[0 \cdot P(V(t-s)=0 \mid V(s)=1) \\
& +1 \cdot P(V(t-s)=1 \mid V(s)=1)] P(V(s)=1) \\
& =1 \cdot(1-P(V(t-s)=1 \mid V(s)=0)) P(V(s)=1) \\
& =\left(1-p_{10}(t-s)\right) \pi \\
& =\pi-\pi p_{10}(t-s)
\end{aligned}
$$

To calculate the covariance

$$
\begin{aligned}
\operatorname{Cov}[V(s) V(t)] & =E[V(s) V(t)]-E[V(t)] E[V(s)] \\
& =\pi-\pi p_{10}(t-s)-\pi \pi \\
& =\pi-\pi(1-\pi)+\pi(1-\pi) e^{-\tau(t-s)}-\pi^{2} \\
& =\pi(1-\pi) e^{-\tau(t-s)} \\
& =\pi(1-\pi) e^{-(\alpha+\beta)(t-s)}
\end{aligned}
$$

since the covariance has to be semetric

$$
\Rightarrow \operatorname{Cov}[V(s) V(t)]=\pi(1-\pi) e^{-(\alpha+\beta)|t-s|}
$$

