DTU Compute

02407 Stochastic Processes 25 Sep 2018 dame/jfan

Solution for problem 5.4.8 in Pinsky \& Karlin

The derivation is similar to that on page $249 / 250$ in KP. Let $\mu_{\xi}=E\left[\xi_{i}\right]$ and let U_{1}, \ldots, U_{n} be independent and uniformly distributed in $(0, t]$.

$$
\begin{align*}
E[Z(t)] & =E\left[\sum_{k=1}^{N(t)} \theta_{k}(t)\right] \\
& =\sum_{n=1}^{\infty} P(N(t)=n) E\left[\sum_{k=1}^{N(t)} \theta_{k}(t) \mid N(t)=n\right] \\
& =\sum_{n=1}^{\infty} P(N(t)=n) E\left[\sum_{k=1}^{N(t)} \xi_{k} e^{-\alpha\left(t-W_{k}\right)} \mid N(t)=n\right] \\
& =\sum_{n=1}^{\infty} P(N(t)=n) E\left[\sum_{k=1}^{n} \xi_{k} e^{-\alpha\left(t-U_{k}\right)}\right] \tag{Theorem5.7}\\
& =\sum_{n=1}^{\infty} P(N(t)=n) E\left[\sum_{k=1}^{n} \xi_{k} e^{-\alpha U_{k}}\right] \\
& =\sum_{n=1}^{\infty} P(N(t)=n) \sum_{k=1}^{n} E\left[\xi_{k}\right] E\left[e^{-\alpha U_{k}}\right] \\
& =\sum_{n=1}^{\infty} P(N(t)=n) \mu_{\xi} n E\left[e^{-\alpha U_{1}}\right] \\
& =\mu_{\xi} E\left[e^{-\alpha U_{1}}\right] E[N(t)] \\
& =\mu_{\xi}\left(\int_{0}^{t} e^{-\alpha u} \frac{1}{t} d u\right) \lambda t \\
& =\frac{\mu_{\xi} \lambda}{\alpha}\left(1-e^{-\alpha t}\right)
\end{align*}
$$

This is also a generalization of the shot noise process in KP page 253/254.

