02407 Stochastic Processes 25 Sep 2018 dame/jfan

Solution for problem 5.4.8 in Pinsky & Karlin

The derivation is similar to that on page 249/250 in KP. Let $\mu_{\xi} = E[\xi_i]$ and let U_1, \ldots, U_n be independent and uniformly distributed in (0, t].

$E\left[Z(t)\right] = E\left[\sum_{k=1}^{N(t)} \theta_k(t)\right]$	
$=\sum_{n=1}^{\infty} P(N(t)=n) E\left[\sum_{k=1}^{N(t)} \theta_k(t) N(t)=n\right]$	
$= \sum_{n=1}^{\infty} P(N(t) = n) E\left[\sum_{k=1}^{N(t)} \xi_k e^{-\alpha(t - W_k)} N(t) = n\right]$	
$=\sum_{n=1}^{\infty} P(N(t)=n) E\left[\sum_{k=1}^{n} \xi_k e^{-\alpha(t-U_k)}\right]$	(Theorem 5.7)
$=\sum_{n=1}^{\infty} P(N(t)=n) E\left[\sum_{k=1}^{n} \xi_k e^{-\alpha U_k}\right]$	(by symmetry of U_k and $t - U_k$)
$=\sum_{n=1}^{\infty} P(N(t)=n) \sum_{k=1}^{n} E[\xi_k] E\left[e^{-\alpha U_k}\right]$	(W and ξ are independent)
$=\sum_{n=1}^{\infty}P(N(t)=n)\mu_{\xi}nE\left[e^{-\alpha U_{1}}\right]$	
$= \mu_{\xi} E\left[e^{-\alpha U_1}\right] E[N(t)]$	
$= \mu_{\xi} \left(\int_0^t e^{-\alpha u} \frac{1}{t} du \right) \lambda t$	
$=\frac{\mu_{\xi}\lambda}{\alpha}(1-e^{-\alpha t})$	

This is also a generalization of the shot noise process in KP page 253/254.