Solution for problem 5.2.6 in Karlin and Pinsky

We see that:

$$
P\left(X_{i}=k\right)=\binom{N}{k}\left(\frac{1}{M}\right)^{k}\left(1-\frac{1}{M}\right)^{N-k}
$$

We know from chapter one (page 23)

$$
\begin{aligned}
\lim _{N \rightarrow \infty} P\left(X_{i}=k\right) & =\lim _{N \rightarrow \infty}\binom{N}{k}\left(\frac{1}{M}\right)^{k}\left(1-\frac{1}{M}\right)^{N-k} \\
& =\lim _{N \rightarrow \infty} \frac{N!}{k!(N-k)!}\left(\frac{\lambda}{N}\right)^{k}\left(1-\frac{\lambda}{N}\right)^{N-k} \\
& =\lim _{N \rightarrow \infty} N(N-1) \cdots(N-k+1) \frac{\lambda^{k}}{N^{k} k!}\left(1-\frac{\lambda}{N}\right)^{N-k} \\
& =\lim _{N \rightarrow \infty} 1\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{k-1}{N}\right) \cdot \frac{\lambda^{k}\left(1-\frac{\lambda}{N}\right)^{N}}{k!\left(1-\frac{\lambda}{N}\right)^{k}} \\
& =1 \cdot \frac{\lambda^{k} \cdot e^{-\lambda}}{k!(1-0)^{k}} \\
& =\frac{\lambda^{k} e^{-\lambda}}{k!}
\end{aligned}
$$

To prove independence for the limit we show that $\lim _{N \rightarrow \infty} P\left(X_{i}=k \mid X_{j}=l\right)=$ $\lim _{N \rightarrow \infty} P\left(X_{i}=k\right)$

$$
\begin{aligned}
\lim _{N \rightarrow \infty} P\left(X_{i}=k \mid x_{j}=l\right) & =\lim _{N \rightarrow \infty}\binom{N-l}{k}\left(\frac{1}{M}\right)^{k}\left(1-\frac{1}{M}\right)^{N-l-k} \\
& =\lim _{N \rightarrow \infty} \frac{(N-l)!}{k!(N-l-k)!}\left(\frac{\lambda}{N}\right)^{k}\left(1-\frac{\lambda}{N}\right)^{N-l-k} \\
& =\lim _{N \rightarrow \infty}(N-l)(N-l-1) \cdots(N-l-k+1) \frac{\lambda^{k}}{N^{k} k!}\left(1-\frac{\lambda}{N}\right)^{N-l-k} \\
& =\lim _{N \rightarrow \infty}\left(1-\frac{l}{N}\right)\left(1-\frac{l+1}{N}\right) \cdots\left(1-\frac{l+k-1}{N}\right) \cdot \frac{\lambda^{k}\left(1-\frac{\lambda}{N}\right)^{N}}{k!\left(1-\frac{\lambda}{N}\right)^{l+k}} \\
& =1 \cdot \frac{\lambda^{k} \cdot e^{-\lambda}}{k!(1-0)^{k}} \\
& =\frac{\lambda^{k} e^{-\lambda}}{k!} \\
& =\lim _{N \rightarrow \infty} P\left(X_{i}=k\right)
\end{aligned}
$$

In the limit the fraction of locations that have two or more accounts assigned to them are:

$$
\begin{aligned}
\lim _{N \rightarrow \infty} P\left(X_{i}>1\right) & =\lim _{N \rightarrow \infty} 1-P\left(X_{i} \leq 1\right) \\
& =1-\lim _{N \rightarrow \infty}\left\{P\left(X_{i}=0\right)+P\left(X_{i}=1\right)\right\} \\
& =1-e^{-\lambda}-\lambda e^{-\lambda}
\end{aligned}
$$

