Solution for exercise 5.1.7 in Karlin and Pinsky

Let \(S(t) \) be the event that the system is surviving at time \(t \). Furthermore let \(N(t) \) be the number of shocks occurring until time \(t \) and \(p_k = \alpha^k \) the probability that the system survives \(k \) shocks. The distribution of the shocks is poisson with rate \(\lambda \) and we know \(P(N(t) = k) = \frac{\lambda^k}{k!}e^{-\lambda} \)

\[
P(S(t)) = \sum_{k=0}^{\infty} P(S(t)|N(t) = k) \cdot P(N(t) = k)
\]
\[
= \sum_{k=0}^{\infty} p_k \cdot P(N(t) = k)
\]
\[
= \sum_{k=0}^{\infty} \alpha^k \cdot P(N(t) = k)
\]
\[
= \sum_{k=0}^{\infty} \alpha^k \cdot \frac{\lambda^k}{k!}e^{-\lambda}
\]
\[
= e^{-\lambda(1-\alpha)}
\]