02407 Stochastic Processes 2011-9-14
DAME/dame

Solution for exercise 4.1.12 in Karlin and Pinsky

0.1 a)

It has to be shown that $P^{n}=Q^{n}+\Pi$ with $Q=P-\Pi$.
Since Π has the stationary distribution as row vectors and P is a stochastic matrix the row sums are equal to one.
Therefor $\Pi \cdot P=\Pi, P \cdot \Pi=\Pi$ and $\Pi \cdot \Pi=\Pi$
Furthermore we use that $P^{n}=Q^{n}+\Pi \Leftrightarrow P^{n}-\Pi=Q^{n}$

$$
\begin{aligned}
Q^{2} & =(P-\Pi)^{2} \\
& =P^{2}-P \Pi-\Pi P+\Pi^{2} \\
& =P^{2}-\Pi-\Pi+\Pi \\
& =P^{2}-\Pi
\end{aligned}
$$

Assuming $Q^{n-1}=P^{n-1}-\Pi$ the equation has only to be proofen for Q^{n}

$$
\begin{aligned}
Q^{n} & =Q^{n-1} Q \\
& =\left(P^{n-1}-\Pi\right)(P-\Pi) \\
& =P^{n}-P^{n-1} \Pi-\Pi P+\Pi^{2} \\
& =P^{n}-\Pi-\Pi+\Pi \\
& =P^{n}-\Pi \\
& \Leftrightarrow P^{n}=Q^{n}+\Pi
\end{aligned}
$$

$0.2 \mathrm{~b})$

With $\pi=\left(\begin{array}{lll}\frac{1}{4} & \frac{1}{2} & \frac{1}{4}\end{array}\right)$ we get:

$$
\begin{aligned}
Q & =\left(\begin{array}{ccc}
\frac{1}{4} & 0 & -\frac{1}{4} \\
0 & 0 & 0 \\
-\frac{1}{4} & 0 & \frac{1}{4}
\end{array}\right) \\
Q^{n} & =\left(\begin{array}{ccc}
\frac{1}{4 \cdot 2^{n-1}} & 0 & -\frac{1}{4 \cdot 2^{n-1}} \\
0 & 0 & 0 \\
-\frac{1}{4 \cdot 2^{n-1}} & 0 & \frac{1}{4 \cdot 2^{n-1}}
\end{array}\right) \\
P^{n} & =\left(\begin{array}{ccc}
\frac{1}{4 \cdot 2^{n-1}}+\frac{1}{4} & \frac{1}{2} & -\frac{1}{4 \cdot 2^{n-1}}+\frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
-\frac{1}{4 \cdot 2^{n-1}}+\frac{1}{4} & \frac{1}{2} & \frac{1}{4 \cdot 2^{n-1}}+\frac{1}{4}
\end{array}\right)
\end{aligned}
$$

