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Solution for exercise 4.1.12 in

Karlin and Pinsky

0.1 a)

It has to be shown that P n = Qn + Π with Q = P − Π.

Since Π has the stationary distribution as row vectors and P is a stochastic

matrix the row sums are equal to one.

Therefor Π · P = Π, P · Π = Π and Π · Π = Π

Furthermore we use that P n = Qn + Π ⇔ P n − Π = Qn

Q2 = (P − Π)2

= P 2 − PΠ− ΠP + Π2

= P 2 − Π− Π + Π

= P 2 − Π

Assuming Qn−1 = P n−1 − Π the equation has only to be proofen for Qn

Qn = Qn−1Q

= (P n−1 − Π)(P − Π)

= P n − P n−1Π− ΠP + Π2

= P n − Π− Π + Π

= P n − Π

⇔ P n = Qn + Π
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0.2 b)

With π =
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)
we get:
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