02407 Stochastic Processes 2011-9-14
DAME/dame

Solution for exercise 4.1.1 in Karlin and Pinsky

Let X_{n} be the amount of balls in urn A. Than the transition matrix can be written as

$$
P=\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Since the matrix is doubly stochastic we can state the stationary distribution immediately. $\pi=\left(\begin{array}{cccccc}\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}\end{array}\right)$ and therefore the fraction of time where urn A is empty is $\pi_{0}=\frac{1}{6}$

