Solution for problem 3.8.3 in Karlin and Pinsky

As this is a very simple branching process, the solution might also be derived in a simpler manner. This solution uses the notation from section 3.8.3.
a) First, consider the same problem, but where the process stops if the first child is a girl. Then we have a branching process where in each generation n, the process dies out with probability $p_{0}=P($ girl $)=1 / 2$ and generates one offspring with probability $p_{1}=P($ boy $)=1 / 2$. Considering the extinction probabilities given in (3.100) and (3.101) we have

$$
u_{n}=P(N \leq n)=p_{0}+p_{1} u_{n-1}
$$

Since $u_{0}=0$ and assuming that $u_{n-1}=1-(1 / 2)^{n-1}$ we get by induction on n that

$$
\begin{aligned}
u_{n} & =p_{0}+p_{1} u_{n-1} \\
& =1 / 2+1 / 2\left(1-(1 / 2)^{n-1}\right) \\
& =1-(1 / 2)^{n}, \quad n=0,1, \ldots
\end{aligned}
$$

The probability of having n children is then given by

$$
\begin{aligned}
P(N=n) & =P(N \leq n)-P(N \leq n-1)=u_{n}-u_{n-1} \\
& =\left(1-(1 / 2)^{n}\right)-\left(1-(1 / 2)^{n-1}\right) \\
& =(1-1 / 2)(1 / 2)^{n-1}=(1 / 2)^{n}
\end{aligned}
$$

Consider the original process and let X be the number of children. Because of the special case that the first child is a girl, the distrubution is as follows:

$$
\begin{aligned}
P(X=k) & = \begin{cases}0 & k=0, k=1 \\
P(N=1)+P(N=2) & k=2 \\
P(N=k) & k \geq 3\end{cases} \\
& = \begin{cases}0 & k=0, k=1 \\
\frac{3}{4} & k=2 \\
\left(\frac{1}{2}\right)^{k} & k \geq 3\end{cases}
\end{aligned}
$$

b) Let X_{m} denote the number of boys. This is the same process except that the number of boys is equal to the length of the process minus 1 , with the two special cases of 0 and 1 boy.

$$
\begin{aligned}
P\left(X_{m}=k\right) & = \begin{cases}P(\text { two girls }) & k=0 \\
P(\text { girl then boy or boy then girl }) & k=1 \\
P(N=k+1) & k \geq 2\end{cases} \\
& = \begin{cases}\frac{1}{4} & k=0 \\
\frac{1}{2} & k=1 \\
(1 / 2)^{k+1} & k \geq 2\end{cases}
\end{aligned}
$$

