Solution for exercise 3.7.1 in Karlin and Pinsky

The transition probability matrix \boldsymbol{P} partitions as

$$
\boldsymbol{P}=\left(\begin{array}{cc}
1 & \overrightarrow{0} \\
\vec{q} & \boldsymbol{Q}
\end{array}\right)
$$

where the elements q_{i} of \vec{q} are $q_{i}=1 / i$ and the elements $Q_{i j}$ of \boldsymbol{Q} are $Q_{i j}=1 / i$ for $j<i$ and 0 otherwise. To calculate $\boldsymbol{W}=(\boldsymbol{I}-\boldsymbol{Q})^{-1}$ we first state $\boldsymbol{W}^{-1}=$ $\boldsymbol{I}-\boldsymbol{Q}=\left\{w_{i j}^{-1}\right\}(1 \leq j, i)$

$$
w_{i j}^{-1}= \begin{cases}0 & j>i \\ 1 & j=i \\ -\frac{1}{i} & j<i\end{cases}
$$

Now we have to calculate $\left(\boldsymbol{W}^{-1}\right)^{-1}=\boldsymbol{W}$ with elements $w_{i j}$.

$$
w_{i j}= \begin{cases}0 & j>i \\ 1 & j=i \\ \frac{1}{j+1} & j<i\end{cases}
$$

We derive the inverse recursively due to the simple structure of \boldsymbol{W}.

