3.6.2

Problem 3.6.2 is referring to a random walk with transitition matrix like given on page 128 in Pinsky/Karlin.
Obviously $v_{0}=E\left[T \mid X_{0}=0\right]=0$ and $v_{N}=E\left[T \mid X_{0}=N\right]=0$. Making a first step analysis we get:

$$
\begin{aligned}
v_{k} & =q_{k}\left(1+v_{k-1}\right)+r_{k}\left(1+v_{k}\right)+p_{k}\left(1+v_{k+1}\right) \\
& =1\left(q_{k}+r_{k}+p_{k}\right)+q_{k} v_{k-1}+r_{k} v_{k}+p_{k} v_{k+1}
\end{aligned}
$$

In order to derive the other equations we would have to consider

$$
\begin{aligned}
v_{k} & =q_{k}\left(1+v_{k-1}\right)+r_{k}\left(1+v_{k}\right)+p_{k}\left(1+v_{k+1}\right) \\
\left(q_{k}+r_{k}+p_{k}\right) v_{k} & =q_{k}\left(1+v_{k-1}\right)+r_{k}\left(1+v_{k}\right)+p_{k}\left(1+v_{k+1}\right) \\
\rightarrow v_{k+1}-v_{k} & =\frac{q_{k}}{p_{k}}\left(v_{k}-v_{k-1}\right)-\frac{1}{p_{k}}
\end{aligned}
$$

Define $X_{k}:=v_{k+1}-v_{k}$. therefore the formula can be rewritten as:

$$
\begin{aligned}
X_{k} & =\frac{q_{k}}{p_{k}} X_{k-1}-\frac{1}{p_{k}} \\
& =\prod_{i=1}^{k} \frac{q_{k}}{p_{k}} X_{0}-\sum_{l=1}^{k-1} \prod_{j=0}^{l-1} \frac{q_{k-j}}{p_{k-j}}
\end{aligned}
$$

The trckis now to write $v_{k+1}=\sum_{l=1}^{k} X_{k}$ and to fullfill some algebraic calculations. We expect the expected time till absorbtion to be higher than in the case where $r_{k}=0$

