Solution for exercise 3.4.12 in Pinsky and Karlin

Let T be the time of absorption and define $z_{i}:=\operatorname{Pr}\left(X_{T-1}=1 \mid X_{0}=i\right)$. This can be used for a first step analysis:

$$
\begin{aligned}
z_{0} & =0.3 z_{0}+0.2 z_{1} \\
z_{1} & =0.4+0.5 z_{0}+0.1 z_{1} \\
\rightarrow z_{0} & =\frac{8}{53}
\end{aligned}
$$

Alternatively we could introduce a second absorbing state, such that the modified chain would be

$$
\boldsymbol{P}=\left(\begin{array}{c|cccc}
& 0 & 1 & 2 & 2^{\prime} \\
\hline 0 & 0.3 & 0.2 & 0.5 & 0 \\
1 & 0.5 & 0.1 & 0 & 0.4 \\
2 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Defining $u_{i}=\operatorname{Pr}\left(X_{T-1}=2^{\prime} \mid X_{0}=i\right)$ we find

$$
\begin{aligned}
& u_{0}=0.3 u_{0}+0.2 u_{1} \\
& u_{1}=0.4+0.5 u_{0}+0.1 u_{1}
\end{aligned}
$$

leading to $u_{0}=\frac{8}{53}$ which is seen to be similar to z_{0}. A short reflection gives that z_{0} and u_{0} is two different ways of evaluating the probability of the event that absorption occurs from state 1 . The former is slightly faster and elegant, while the second method is obtained by directly using the formulation of Section 3.4.

