$$
\begin{array}{r}
p=\left(\begin{array}{llll}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right) \\
\mathbf{P}=\left(\begin{array}{llll}
0,4 & 0,3 & 0,2 & 0,1 \\
0,1 & 0,4 & 0,3 & 0,2 \\
0,3 & 0,2 & 0,1 & 0,4 \\
0,2 & 0,1 & 0,4 & 0,3
\end{array}\right)
\end{array}
$$

Proof by induction. Obviously the result holds for $n=0$. Observe that $p \mathbf{P}=p$. We assume $p \mathbf{P}^{n}=p$ and then we consider the case $n \rightarrow n+1$

$$
p \mathbf{P}^{n+1}=p \mathbf{P} \mathbf{P}^{n}=p \mathbf{P}^{n}=p
$$

This can be explained by the columns summing to 1 and the initial distribution being equally distributed.

