Lecture 9: Exercises

October 2023

In the following exercises, we investigate a system consisting of 4 identical components, which can either be in functioning or failed state. The lifetimes of the respective components are i.i.d. with distribution:

$$
X_{i} \sim \exp (\beta)
$$

for $1 \leq i \leq 4$ and $\beta \in \mathbb{R}^{+}$. Failure is irreversible. The system is inspected at regular intervals of τ time units. The state of the system is given as the number of functioning components at the time of inspection. Thus, the state space is given by:

$$
S=\{0, \ldots, 4\}
$$

Without maintenance, the system will deteriorate according to a DTMC.

Exercise 1: Show that the transition probabilities between two inspections are given by:

$$
\begin{equation*}
p(t \mid s)=\binom{s}{t} e^{-\beta \tau t}\left(1-e^{-\beta \tau}\right)^{s-t} \tag{1}
\end{equation*}
$$

for $0 \leq t \leq s \leq 4$. Hint: Find expressions for $P\left(X_{i} \leq \tau\right)=F(\tau)$ and $P\left(X_{i}>\tau\right)=R(\tau)$.

At each inspection, we have the opportunity to replace any number of failed components. Thus, in state $s \in S$, the action set is given by:

$$
A_{s}=\left\{a_{0}, \ldots, a_{4-s}\right\}
$$

where a_{i} is the action of replacing i components. Failed components can be replaced immediately and are substituted by statistically equivalent (functioning) components.

Exercise 2: Find a general expression for the transition probabilities

$$
p\left(t \mid s, a_{i}\right)
$$

for $0 \leq t, s \leq 4$ and $a_{i} \in A_{s}$. Hint: Use the expression in (1).

Assume now, that the cost function is given by:

$$
c\left(s, a_{i}, t\right)=\mathbb{1}_{i>0} \cdot \alpha+i \cdot \beta+\mathbb{1}_{t=0} \cdot \gamma
$$

for $\alpha, \beta, \gamma \in \mathbb{R}^{+}$where $\mathbb{1}_{(\cdot)}$ is the indicator function and t is the realisation of the random variable T representing the successor state (at the next inspection). Here, α and β may represent the fixed and variable cost of replacing components, while γ may be the breakdown/downtime cost.

Exercise 3: Show that the expected cost when taking action a_{0} in state $s \in S$ is given by:

$$
\bar{c}\left(s, a_{0}\right):=\mathbb{E}\left\{c\left(s, a_{0}, T\right)\right\}=\gamma\left(1-e^{-\beta \tau}\right)^{s}
$$

What does this say about the cost of systematically leaving the system unmaintained in the long run?

We are now given a (stationary deterministic) policy $\pi: S \rightarrow A$. Consider the sequence of state-action pairs $S_{0}, \pi\left(S_{0}\right), S_{1}, \pi\left(S_{1}\right), S_{2}, \pi\left(S_{2}\right), \ldots$ and let

$$
c\left(S_{0}, \pi\left(S_{0}\right), S_{1}\right), c\left(S_{1}, \pi\left(S_{1}\right), S_{2}\right), c\left(S_{2}, \pi\left(S_{2}\right), S_{3}\right), \ldots
$$

be the sequential costs incurred in the first, second, third etc. decision epochs. To reduce the weight of future costs, we introduce the discount factor $0<\lambda<1$ and consider the discounted costs

$$
c\left(S_{0}, \pi\left(S_{0}\right), S_{1}\right), \lambda c\left(S_{1}, \pi\left(S_{1}\right), S_{2}\right), \lambda^{2} c\left(S_{2}, \pi\left(S_{2}\right), S_{3}\right), \ldots
$$

as an alternative cost measure when evaluating long-term plans.

Exercise 4: Show that the total discounted cost:

$$
\sum_{i=0}^{\infty} \lambda^{i} c\left(S_{i}, \pi\left(S_{i}\right), S_{i+1}\right)
$$

over an infinite horizon is well-defined.

It is now given that the system, when unmaintained, deteriorates according to the DTMC:

$$
M_{\varnothing}=\left[\begin{array}{ccccc}
4 & 3 & 2 & 1 & 0 \\
.0625 & .2500 & .3750 & .2500 & .0625 \\
. & .1250 & .3750 & .3750 & .1250 \\
. & . & .2500 & .5000 & .2500 \\
. & . & . & .5000 & .5000 \\
. & . & . & . & 1
\end{array}\right] \begin{gathered}
4 \\
3 \\
2 \\
1 \\
0
\end{gathered}
$$

Assume, that we adopt the (stationary deterministic) maintenance policy $\pi: S \rightarrow A$ given by:

$$
\pi(4)=\pi(3)=a_{0}, \pi(2)=a_{2}, \pi(1)=a_{3}, \pi(0)=a_{4}
$$

That is, if there are 2 or fewer functioning components, π prescribes replacing all failed components. Else, π prescribes doing nothing $\left(a_{0}\right)$. Implementing a policy reduces an MDP to a DTMC (why?).

Exercise 5: Write up the Markov chain:

$$
M_{\pi} \in \mathbb{R}^{5 \times 5}
$$

induced by the policy π. Hint: all the rows in M_{π} can be read off M_{\varnothing}.

Assume now, that the expected cost function \bar{c} takes the following values:

Table 1: Expected cost of state action pairs under π

s	4	3	2	1	0
$\pi(s)$	0	0	2	3	4
$\bar{c}(s, \pi(s))$	625	1,250	2,825	3,425	4,025

Exercise 6: Determine the long run expected cost per epoch under the maintenance policy π. Hint: Under the policy π the MDP is reduced to a DTMC which has a limiting distribution.

Solutions:

Exercise 1: The probability that a single functioning component survives another period (between inspections) is given by:

$$
R(\tau)=\int_{\tau}^{\infty} \beta e^{-\beta t} d t=e^{-\beta \tau}
$$

Also, the probability that a single functioning component fails before the next inspection is $F(\tau)=1-e^{-\beta \tau}$. Starting with s functioning components, the number of components surviving a period is binomially distributed with:

$$
\binom{s}{t} R(\tau)^{t} F(\tau)^{s-t}
$$

The expression in (1) follows directly.

Exercise 2: As noted, replacement is immediate. Thus, after replacement, we have:

$$
p\left(t \mid s, a_{i}\right)=p(t \mid s+i)
$$

Referring to the result from Exercise 1, we conclude that:

$$
p\left(t \mid s, a_{i}\right)=\binom{s+i}{t} e^{-\beta \tau t}\left(1-e^{-\beta \tau}\right)^{s+i-t}
$$

for $t \leq s+i$. Because failure is irreversible, we have:

$$
p\left(t \mid s, a_{i}\right)=0
$$

for $t>s+i$.

Exercise 3: Note that the cost function reduces to:

$$
c\left(s, a_{0}, T\right)=\mathbb{1}_{0>0} \cdot \alpha+0 \cdot \beta+\mathbb{1}_{T=0} \cdot \gamma=\mathbb{1}_{T=0} \cdot \gamma
$$

under the action a_{0}. Therefore the expected cost conditioned on s and a_{0} is given by:

$$
\mathbb{E}\left\{c\left(s, a_{0}, T\right)\right\}=\mathbb{E}\left\{\mathbb{1}_{T=0} \cdot \gamma \mid s, a_{0}\right\}=\gamma P\left(T=0 \mid s, a_{0}\right)=\gamma F(\tau)^{s+0}=\gamma\left(1-e^{-\beta \tau}\right)^{s}
$$

as claimed. If maintenance is systematically neglected, the system will tend to the state $s=0$ and the cost per period will eventually be γ.

Exercise 4: Note that the cost function is bounded by:

$$
c\left(s, a_{i}, t\right) \leq \alpha+4 \cdot \beta+\gamma:=c^{+}
$$

Since the discount factor satisfies: $|\lambda|<1$ we have:

$$
\sum_{i=0}^{\infty} \lambda^{i} c\left(S_{i}, \pi\left(S_{i}\right), S_{i+1}\right) \leq \sum_{i=0}^{\infty} \lambda^{i} c^{+}=\frac{c^{+}}{1-\gamma}
$$

Thus, the discounted total cost is increasing an bounded above, which implies that it converges.

Exercise 5: Note, that:

$$
\pi(4)=\pi(3)=a_{0}
$$

which implies that the system under policy π is left unmaintained when observed in state $s \geq 3$. Therefore:

$$
M_{\pi}[3: 4,]=M_{\varnothing}[3: 4,]
$$

(using computer-inspired notation). Furthermore, when $0 \leq s \leq 2$, all failed components are immediately replaced, which means that:

$$
M_{\pi}[0,]=M_{\pi}[1,]=M_{\pi}[2,]=M_{\varnothing}[4,]
$$

The resulting matrix is given as:

$$
M_{\pi}=\left[\begin{array}{ccccc}
4 & 3 & 2 & 1 & 0 \\
.0625 & .2500 & .3750 & .2500 & .0625 \\
. & .1250 & .3750 & .3750 & .1250 \\
.0625 & .2500 & .3750 & .2500 & .0625 \\
.0625 & .2500 & .3750 & .2500 & .0625 \\
.0625 & .2500 & .3750 & .2500 & .0625
\end{array}\right] \begin{aligned}
& 4 \\
& 3 \\
& 2 \\
& 1 \\
& 0
\end{aligned}
$$

Exercise 6: Since M_{π} is regular, the limiting probabilities exist and can be found with first-step analysis:

$$
\rho=\left(\rho_{4}, \ldots, \rho_{0}\right) \approx(0.0486,0.2222,0.3750,0.2778,0.0764)
$$

The long run expected cost per time period is given by:

$$
\sum_{s=0}^{4} \rho_{s} \cdot \bar{c}(s, \pi(s)) \approx 2626.39
$$

which is the expected cost of the state-action pairs $(s, \pi(s))_{s \in S}$ weighted by the long-run fraction of time that the process is expected to be in the respective states.

