Birth and Death Processes

Bo Friis Nielsen

1 DTU Informatics

02407 Stochastic Processes 5, 3 October 2017

Birth and Death Processes

Today:

▶ Birth processes
▶ Yule process
▶ Death processes
▶ Birth and death processes

Next week

▶ Limiting behaviour of birth and death processes
▶ Birth and death processes with absorbing states
▶ Finite state continuous time Markov chains

Two weeks from now

▶ Renewal phenomena

Birth and Death Processes

Poisson postulates

1. \(\Pr\{X(t + h) - X(t) = 1 | X(t) = x\} = \lambda h + o(h) \)
2. \(\Pr\{X(t + h) - X(t) = 0 | X(t) = x\} = 1 - \lambda h + o(h) \)
3. \(X(0) = 0 \)

Where

\[
\lim_{h \to 0+} \frac{\Pr\{X(t + h) - X(t) = 1 | X(t) = x\}}{h} = \lambda + o(h)
\]
Birth Process Postulates

i \(P\{X(t+h) - X(t) = 1 | X(t) = k\} = \lambda_k h + o(h) \)

ii \(P\{X(t+h) - X(t) = 0 | X(t) = k\} = 1 - \lambda_k h + o(h) \)

iii \(X(0) = 0 \) (not essential, typically used for convenience)

We define \(P_n(t) = P\{X(t) = n | X(0) = 0\} \)

Sojourn times

Define \(S_k \) as the time between the \(k \)th and \((k+1)\)st birth

\[
P_n(t) = P\left\{ \sum_{k=0}^{n-1} S_k \leq t < \sum_{k=0}^{n} S_k \right\}
\]

where \(S_i \sim \text{exp}(\lambda_i) \).

With \(W_k = \sum_{i=0}^{k-1} S_i \)

\[
P_n(t) = P\{W_n \leq t < W_{n+1}\}
\]

\[
P\{S_0 \leq t\} = P\{W_1 \leq t\} = 1 - P\{X(t) = 0\} = 1 - P_0(t) = 1 - e^{-\lambda_0 t}
\]

Solution of differential equations

Introduce \(Q_n(t) = e^{\lambda_0 t} P_n(t) \), then

\[
Q_n(t) = \lambda_n e^{\lambda_0 t} P_n(t) + e^{\lambda_0 t} P'_n(t) = e^{\lambda_0 t} (\lambda_n P_n(t) + P'_n(t)) = e^{\lambda_0 t} \lambda_n P_{n-1}(t)
\]

such that

\[
Q_n(t) = \lambda_{n-1} \int_0^t e^{\lambda_0 x} P_{n-1}(x) \, dx
\]

leading to

\[
P_n(t) = \lambda_{n-1} e^{-\lambda_0 t} \int_0^t e^{\lambda_0 x} P_{n-1}(x) \, dx
\]
Regular Process

\[\sum_{n=0}^{\infty} P_n(t) = 1 \]

True if:

\[\lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{\lambda_k} = \infty \]

Then

\[\sum_{k=0}^{\infty} P_k(t) = 1 \]

Recursive full solution when \(\lambda_i \neq \lambda_j \) for \(i \neq j \)

\[P_n(t) = \left(\prod_{j=0}^{n-1} \lambda_j \right) \sum_{j=0}^{n} B_{i,n} e^{-\lambda_j t} \]

with

\[B_{i,n} = \prod_{j \neq i} (\lambda_j - \lambda_i)^{-1} \]

Yule Process

\[P'_n(t) = -\beta n P_n(t) + \beta (n-1) P_{n-1}(t) \]

\[P_n(t) = e^{-\beta t} \left(1 - e^{-\beta t} \right)^{n-1} \]

Death Process Postulates

1. \(P\{X(t+h) = k-1|X(t) = k\} = \mu_k h + o(h) \)
2. \(P\{X(t+h) = k|X(t) = k\} = 1 - \mu_k h + o(h) \)
3. \(X(0) = N \)

\[P_n(t) = \left(\prod_{j=0}^{n-1} \mu_j \right) \sum_{j=n}^{N} A_{j,n} e^{-\lambda_j t} \]

with

\[A_{k,n} = \prod_{j=n,j \neq k}^{N} (\mu_j - \mu_k)^{-1} \]

For \(\mu_k = k \mu \) we have by a simple probabilistic argument

\[P_n(t) = \binom{N}{n} (e^{-\mu t})^n (1 - e^{-\mu t})^{N-n} = \binom{N}{n} e^{-n \mu t} (1 - e^{-\mu t})^{N-n} \]

Birth and Death Process Postulates

1. \(P_{i,i+1}(h) = \lambda_i h + o(h) \)
2. \(P_{i,i-1}(h) = \mu_i h + o(h) \)
3. \(P_{i,i}(h) = -(\lambda_i + \mu_i)h + o(h) \)
4. \(P_{i,j}(0) = \delta_{ij} \)
5. \(\mu_0 = 0, \lambda_0 > 0, \mu_i, \lambda_j > 0, i = 1, 2, \ldots \)
Infinitesimal Generator

\[
A = \begin{pmatrix}
-\lambda_0 & \lambda_0 & 0 & 0 \\
\mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 \\
0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 \\
0 & 0 & \mu_3 & -(\lambda_3 + \mu_3) \\
\vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}
\]

\[
P_{ij}(t+s) = \sum_{k=0}^{\infty} P_{ik}(t)P_{kj}(s), \quad P(t+s) = P(t)P(s)
\]

Regular Process

\[
\sum_{n=0}^{\infty} \frac{1}{\lambda_n \theta_n} \sum_{k=0}^{n} \theta_k = \infty
\]

where

\[
\theta_0 = 1, \quad \theta_n = \prod_{k=0}^{n-1} \frac{\lambda_k}{\mu_{k+1}}
\]

ODE's for Birth and Death Process

\[
P_{0j}'(t) = -\lambda_0 P_{0j}(t) + \lambda_1 P_{1j}(t)
\]

\[
P_{ij}'(t) = \mu_i P_{i-1,j}(t) - (\lambda_i + \mu_i)P_{ij}(t) + \lambda_{i+1}P_{i+1,j}(t)
\]

\[
P_{ij}(0) = \delta_{ij}
\]

\[
P'(t) = AP(t)
\]

Backward Kolomogorov equations

\[
P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(h)P_{kj}(t)
\]

\[
= P_{i-1,j}(t)P_{i,j}(h) + P_{i,j}(h)P_{i+1,j}(t) + P_{i+1,j}(h)P_{i,j}(t) + o(h)
\]

\[
= \mu_i h P_{i-1,j}(t) + (1 - (\mu_i + \lambda_i)h)P_{i,j}(t) + \lambda_i h P_{i+1,j}(t) + o(h)
\]

Forward Kolomogorov equations

\[
P_{ij}(t+h) = \sum_{k=0}^{\infty} P_{ik}(t)P_{kj}(h)
\]

\[
P'(t) = P(t)A
\]

The backward and forward equations have the same solutions in all "ordinary" models, that is models without explosion and models without instantaneous states.
ODE's for Birth and Death Process

\[P'_{i0}(t) = -P_{i0}(t)\lambda_0 + P_{i1}(t)\mu_1 \]
\[P'_{ij}(t) = P_{i,j-1}\lambda_{j-1} - P_{j\bar{j}}(t)\lambda_j + \mu_j + P_{ij+1}(t)\mu_{j+1} \]
\[P'_{i0}(0) = \delta_{\bar{i}} \]
\[P'(t) = AP \]

Sojourn times

\[P\{S_i \geq t\} = G_i(t) \]
\[G_i(t+h) = G_i(t)G_i(h) = G_i(t)[P_{i(h)} + o(h)] \]
\[G_i(t)[1 - (\lambda_i + \mu_i)h] + o(h) \]
\[G'_i(t) = -(\lambda_i + \mu_i)G_i(t) \]
\[G_i(t) = e^{-(\lambda_i+\mu_i)t} \]

Embedded Markov chain

Define \(T_n \) as the time of the \(n \)th state change at the Define \(N(t) \) to be number of state changes up to time \(t \).

\[P\{X(T_{n+1}) = j | X(T_n) = i\} \]

Define \(Y_n = X(T_n) \)

\[P\{Y_{n+1} = j | Y_n = i\} = \begin{cases} 0 & \text{for } j = i - 1 \\ \frac{\mu_i}{\mu_i + \lambda_i} & \text{for } j = i + 1 \\ 0 & \text{for } j \notin \{i - 1, i + 1\} \end{cases} \]

\[P = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots \\ \frac{\mu_1}{\mu_1 + \lambda_1} & 0 & \frac{\lambda_1}{\mu_1 + \lambda_1} & 0 & \cdots \\ 0 & \frac{\mu_2}{\mu_2 + \lambda_2} & 0 & \frac{\lambda_2}{\mu_2 + \lambda_2} & \cdots \\ 0 & 0 & \frac{\mu_3}{\mu_3 + \lambda_3} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \]

Definition through Sojourn Times and Embedded Markov Chain

Sequence of states governed by the discrete Time Markov chain with transition probability matrix \(P \)

Exponential sojourn times in each state with intensity parameter \(\gamma_i(= \mu_1 + \lambda_i) \)
Linear Growth with Immigration

\[P_{i0}(t) = -aP_{i0}(t) + \mu P_{i1}(t) \]
\[P_{ij}(t) = [\lambda(j - 1) + a]P_{ij-1}(t) + \mu(j + 1)P_{i,j+1}(t) \]

With \(M(0) = i \) if \(X(0) \) this leads to

\[\mathbb{E}[X(t)] = M(t) = \sum_{j=1}^{\infty} jP_{ij}(t) \]
\[M'(t) = a + (\lambda - \mu)M(t) \]
\[M(t) = \left\{ \begin{array}{ll}
\frac{at + i}{\lambda - \mu} & \text{if } \lambda = \mu \\
\frac{at + i}{\lambda - \mu} \{ e^{(\lambda - \mu)t} - 1 \} + ie^{(\lambda - \mu)t} & \text{if } \lambda \neq \mu
\end{array} \right. \]

Two-State Markov Chain

\[\mathbf{A} = \begin{bmatrix} -\alpha & \alpha \\ \beta & -\beta \end{bmatrix} \]
\[P'_{00}(t) = -\alpha P_{00}(t) + \beta P_{01}(t) \]

With \(P_{01}(t) = 1 - P_{00}(t) \) we get
\[P'_{00}(t) = -(\alpha + \beta)P_{00}(t) + \beta \]

Using the standard approach with \(Q_{00}(t) = e^{(\alpha + \beta)t}P_{00}(t) \) we get
\[Q_{00}(t) = \frac{\beta}{\alpha + \beta} e^{(\alpha + \beta)t} + C \]

which with \(P_{00}(0) = 1 \) give us
\[P_{00}(t) = \frac{\beta}{\alpha + \beta} + \frac{\alpha}{\alpha + \beta} e^{-(\alpha + \beta)t} = \pi_1 + \pi_2 e^{-(\alpha + \beta)t} \]

with \(\pi = (\pi_1, \pi_2) = \left(\frac{\beta}{\alpha + \beta}, \frac{\alpha}{\alpha + \beta} \right) \).

Two-State Markov Chain - continued

Using \(P_{01}(t) = 1 - P_{00}(t) \) we get
\[P_{01}(t) = \pi_2 - \pi_2 e^{-(\alpha + \beta)t} \]

and by an identical derivation
\[P_{11}(t) = \pi_2 + \pi_1 e^{-(\alpha + \beta)t} \]
\[P_{10}(t) = \pi_1 - \pi_1 e^{-(\alpha + \beta)t} \]