Random walks and branching processes

Bo Friis Nielsen

1 DTU Informatics

02407 Stochastic Processes 2, September 8 2020

Simple random walk with two reflecting barriers 0 and \(N \)

\[
P = \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
q & 0 & p & \ldots & 0 & 0 & 0 \\
0 & q & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & q & 0 & p \\
0 & 0 & 0 & \ldots & 0 & 0 & 1 \\
\end{pmatrix}
\]

\(T = \min\{ n \geq 0; X_n \in \{0, 1\} \} \)

\(u_k = \mathbb{P}\{X_T = 0 | X_0 = k \} \)

Discrete time Markov chains

Today:
- Random walks
- First step analysis revisited
- Branching processes
- Generating functions

Next week
- Classification of states
- Classification of chains
- Discrete time Markov chains - invariant probability distribution

Two weeks from now
- Poisson process

Solution technique for \(u_k' \)s

\(u_k = pu_{k+1} + qu_{k-1}, \quad k = 1, 2, \ldots, N - 1, \)

\(u_0 = 1, \)

\(u_N = 0 \)

Rewriting the first equation using \(p + q = 1 \) we get

\[
(p + q)u_k = pu_{k+1} + qu_{k-1} \iff 0 = p(u_{k+1} - u_k) - q(u_k - u_{k-1}) \iff x_k = (q/p)x_{k-1}
\]

with \(x_k = u_k - u_{k-1} \), such that

\[
x_k = (q/p)^{k-1}x_1
\]
Recovering \(u_k \)

\[
\begin{align*}
x_1 &= u_1 - u_0 = u_1 - 1 \\
x_2 &= u_2 - u_1 \\
& \vdots \\
x_k &= u_k - u_{k-1}
\end{align*}
\]

such that

\[
\begin{align*}
 u_1 &= x_1 + 1 \\
u_2 &= x_2 + x_1 + 1 \\
& \vdots \\
u_k &= x_k + x_{k-1} + \cdots + 1 = 1 + x_1 \sum_{i=0}^{k-1} \frac{q}{p}^i
\end{align*}
\]

Values of absorption probabilities \(u_k \)

From \(u_N = 0 \) we get

\[
\begin{align*}
 0 &= 1 + x_1 \sum_{i=0}^{N-1} \left(\frac{q}{p} \right)^i \\
 x_1 &= -\frac{1}{\sum_{i=0}^{N-1} \left(\frac{q}{p} \right)^i}
\end{align*}
\]

Leading to

\[
\begin{align*}
 u_k &= \begin{cases}
 1 - \left(\frac{k}{N} \right) = \left(\frac{N-k}{N} \right) & \text{when } \ p = q = \frac{1}{2} \\
 \frac{(q/p)^k - (q/p)^N}{1 - (q/p)} & \text{when } p \neq q
 \end{cases}
\end{align*}
\]

Expected number of visits to states

\[
W^{(n)}_{ij} = Q^{(0)} + Q^{(1)} + \cdots + Q^{(n)}
\]

In matrix notation we get

\[
W^{(n)} = I + Q + Q^2 + \cdots + Q^n = I + Q \left(I + Q + \cdots + Q^{n-1} \right) = I + QW^{(n-1)}
\]

Elementwise we get the “first step analysis” equations

\[
W^{(n)}_{ij} = \delta_{ij} + \sum_{k=0}^{n-1} P_{ik} W^{(n-1)}_{kj}
\]

Direct calculation as opposed to first step analysis

\[
P = \begin{bmatrix} Q & R \\ 0 & I \end{bmatrix}
\]

\[
P^2 = \begin{bmatrix} Q & R \\ 0 & I \end{bmatrix} \begin{bmatrix} Q & R \\ 0 & I \end{bmatrix} = \begin{bmatrix} Q^2 & QR + R \\ 0 & I \end{bmatrix}
\]

\[
P^n = \begin{bmatrix} Q^n & Q^{n-1}R + Q^{n-2}R + \cdots + QR + R \\ 0 & I \end{bmatrix}
\]

\[
W^{(n)}_{ij} = E \left[\sum_{\ell=0}^{n} \mathbb{I}(X_{\ell} = j) \mid X_0 = i \right], \quad \text{where} \quad \mathbb{I}(X_{\ell}) = \begin{cases}
 1 & \text{if } X_{\ell} = j \\
 0 & \text{if } X_{\ell} \neq j
\end{cases}
\]
Limiting equations as $n \to \infty$

$$W = I + Q + Q^2 + \cdots = \sum_{i=0}^{\infty} Q^i$$

$$W = I + QW$$

From the latter we get

$$(I - Q)W = I$$

When all states related to Q are transient (we have assumed that) we have

$$W = \sum_{i=0}^{\infty} Q^i = (I - Q)^{-1}$$

With $T = \min\{n \geq 0, r \leq X_n \leq N\}$ we have that

$$W_{ij} = E\left[\sum_{n=0}^{T-1} \mathbb{1}(X_n = j) \mid X_0 = i\right]$$

Absorption time

$$\sum_{n=0}^{T-1} \sum_{j=0}^{r} \mathbb{1}(X_n = j) = \sum_{n=0}^{T-1} 1 = T$$

Thus

$$E(T \mid X_0 = i) = E\left[\sum_{j=0}^{r} \sum_{n=0}^{T-1} \mathbb{1}(X_n = j) X_0 = i\right]$$

$$= \sum_{j=0}^{r} E\left[\sum_{n=0}^{T-1} \mathbb{1}(X_n = j) \mid X_0 = i\right]$$

$$= \sum_{j=0}^{r} W_{ij}$$

In matrix formulation

$$v = W1$$

where $v_i = E(T \mid X_0 = i)$ as last week, and 1 is a column vector of ones.

Absorption probabilities

$$U_{ij}^{(n)} = P\{T \leq n, X_T = j \mid X_0 = i\}$$

$$U^{(1)} = R = IR$$

$$U^{(2)} = IR + QR$$

$$U^{(n)} = (I + Q + \cdots + Q^{(n-1)}) R = W^{(n-1)} R$$

Leading to

$$U = WR$$

Conditional expectation discrete case (2.1)

$$P\{Y = y \mid X = x\} = \frac{P\{X = x, Y = y\}}{P\{X = x\}}$$

$$E[Y \mid X = x] = \sum_y y P\{Y = y \mid X = x\}$$

$h(x) = E[Y \mid X = x]$ is a function of x, thus $h(X)$ is a random variable, which we call $E[Y \mid X]$. Now

$$E[h(X)] = \sum_x P\{X = x\} h(x) = \sum_x P\{X = x\} \sum_y y P\{Y = y \mid X = x\}$$

$$= \sum_x \sum_y y P\{X = x, Y = y\} = \sum_x \sum_y y P\{X = x, Y = y\}$$

$$= E[Y] = E\{E[Y \mid X]\}, \quad (E[g(Y)] = E\{E[g(Y) \mid X]\})$
Conditional variance discrete case

\[\text{Var}[Y] = E[Y^2] - E[Y]^2 = E\{E[Y^2 \mid X]\} - E[Y]^2 \]

\[= E\{\text{Var}[Y \mid X] + E[Y^2 \mid X]\} - E[E[Y \mid X]]^2 \]

\[= E\{\text{Var}[Y \mid X]\} + E\{E[Y^2 \mid X]\} - E\{E[Y \mid X]\}^2 \]

\[= E\{\text{Var}[Y \mid X]\} + \text{Var}[E[Y \mid X]] \]

Random sum (2.3)

\[X = \xi_1 + \cdots + \xi_N = \sum_{i=1}^{N} \xi_i \]

where \(N \) is a random variable taking values among the non-negative integers; with

\[E(N) = \nu, \text{Var}(N) = \tau^2, E(\xi_i) = \mu, \text{Var}(\xi_i) = \sigma^2 \]

\[E(X) = E(E(X \mid N)) = E(N \mu) = \nu \mu \]

\[\text{Var}(X) = E(\text{Var}(X \mid N)) + \text{Var}(E(X \mid N)) \]

\[= E(N \sigma^2) + \text{Var}(N \mu) = \nu \sigma^2 + \tau^2 \mu^2 \]

Branching processes

\[X_{n+1} = \xi_1 + \xi_2 + \cdots + \xi_n \]

where \(\xi_i \) are independent random variables with common propability mass function

\[P\{\xi_i = k\} = p_k \]

From a random sum interpretation we get

\[E(X_{n+1}) = \mu E(X_n) = \mu^{n+1} \]

\[\text{Var}(X_{n+1}) = \sigma^2 E(X_n) + \mu \text{Var}(X_n) = \sigma^2 \mu^n + \mu^2 \text{Var}(X_n) \]

\[= \sigma^2 \mu^n + \mu^2 (\sigma^2 \mu^{n-1} + \mu^2 \text{Var}(X_{n-1})) \]

Extinction probabilities

Define \(N \) to be the random time of extinction (\(N \) can be defective - i.e. \(P\{N = \infty\} > 0\))

\[u_n = P\{N \leq n\} = P\{X_N = 0\} \]

And we get

\[u_n = \sum_{k=0}^{\infty} p_k u_{n-1}^k \]
The generating function - an important analytic tool

- Manipulations with probability distributions
- Determining the distribution of a sum of random variables
- Determining the distribution of a random sum of random variables
- Calculation of moments
- Unique characterisation of the distribution
- Same information as CDF

Generating functions

\[\phi(s) = \mathbb{E}\left(s^\xi\right) = \sum_{k=0}^{\infty} p_k s^k, \quad p_k = \frac{1}{k!} \left. \frac{d^k \phi(s)}{ds^k}\right|_{s=0} \]

Moments from generating functions

\[\left. \frac{d\phi(s)}{ds}\right|_{s=1} = \sum_{k=1}^{\infty} p_k k s^{k-1}, \quad \mathbb{E}(\xi) \]

Similarly

\[\left. \frac{d^2 \phi(s)}{ds^2}\right|_{s=1} = \sum_{k=2}^{\infty} p_k k(k-1) s^{k-2}, \quad \mathbb{E}(\xi - 1) \]

A factorial moment

\[\text{Var}(\xi) = \phi''(1) + \phi'(1) - (\phi'(1))^2 \]

The sum of iid random variables

Remember Independent Identically Distributed

\[S_n = X_1 + X_2 + \cdots + X_n = \sum_{i=1}^{n} X_i \]

With \(p_x = P\{X_i = x\}, \quad X_i \geq 0 \) we find for \(n = 2 \)

\[S_2 = X_1 + X_2 \]

The event \(\{S_2 = x\} \) can be decomposed into the set

\[\{(X_1 = 0, X_2 = x), (X_1 = 1, X_2 = x - 1)\}
\]

\[\cdots (X_1 = i, X_2 = x - i), \cdots (X_1 = x, X_2 = 0)\}\]

The probability of the event \(\{S_2 = x\} \) is the sum of the probabilities of the individual outcomes.

The Probability of outcome \((X_1 = i, X_2 = x - i) \) is \(P\{X_1 = i\} P\{X_2 = x - i\} \) by independence, which again is \(p_i p_{x-i} \).

In total we get

\[P\{S_2 = x\} = \sum_{i=0}^{x} p_i p_{x-i} \]
Generating function - one example

Binomial distribution

\[p_k = \binom{n}{k} p^k (1-p)^{n-k} \]

\[\phi_{bin}(s) = \sum_{k=0}^{n} s^k p_k = \sum_{k=0}^{n} s^k \binom{n}{k} p^k (1-p)^{n-k} \]

\[= \sum_{k=0}^{n} \binom{n}{k} (sp)^k (1-p)^{n-k} = (1-p+ps)^n \]

Generating function - another example

Poisson distribution

\[p_k = \frac{\lambda^k}{k!} e^{-\lambda} \]

\[\phi_{poi}(s) = \sum_{k=0}^{\infty} s^k p_k = \sum_{k=0}^{\infty} s^k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(s\lambda)^k}{k!} \]

\[= e^{-\lambda} e^{s\lambda} = e^{-\lambda(1-s)} \]

And now to the reason for all this ...

The convolution can be tough to deal with (sum of random variables)

Theorem

If \(X \) and \(Y \) are independent then

\[\phi_{X+Y}(s) = \phi_X(s) \phi_Y(s) \]

where \(\phi_X(s) \) and \(\phi_Y(s) \) are the generating functions of \(X \) and \(Y \)

A probabilistic proof (which I think is instructive)

\[\phi_{X+Y}(s) = E\left(s^{X+Y} \right) = E\left(s^X s^Y \right) = E\left(s^X \right) E\left(s^Y \right) = \phi_X(s) \phi_Y(s) \]

Sum of two Poisson distributed random variables

\(X \sim P(\lambda) \quad Y \sim P(\mu) \quad Z = X + Y \)

\[\phi_X(s) = e^{-\lambda(1-s)} \quad \phi_Y(s) = e^{-\mu(1-s)} \quad P\{X = x\} = p_x = \lambda^x \frac{e^{-\lambda}}{x!} \]

And we get

\[\phi_Z(s) = \phi_X(s) \phi_Y(s) = e^{-\lambda(1-s)} e^{-\mu(1-s)} = e^{-(\lambda+\mu)(1-s)} \]

Such that

\[Z \sim P(\lambda + \mu) \]
Sum of two Binomial random variables with the same p

\[X \sim B(n, p) \quad Y \sim B(m, p) \quad Z = X + Y \]

\[\phi_X(s) = (1 - p + ps)^n \quad \phi_Y(s) = (1 - p + ps)^m \]

And we get

\[\phi_Z(s) = \phi_X(s) \phi_Y(s) = (1 - p + ps)^n (1 - p + ps)^m = (1 - p + ps)^{n+m} \]

Such that

\[Z \sim B(n + m, p) \]

Poisson example

\[X \sim P(\lambda) \quad \phi_X(s) = e^{-\lambda(1-s)} \quad \left(P\{X = x\} = p_x = \frac{\lambda^x e^{-\lambda}}{x!} \right) \]

\[\phi'(s) = -(-\lambda)e^{-\lambda(1-s)} = \lambda e^{-\lambda(1-s)} \]

And we find

\[E(X) = \phi'(1) = \lambda e^0 = 1 \quad \phi''(s) = \lambda^2 e^{-\lambda(1-s)} \quad V(X) = \phi''(1) + \phi'(1) - (\phi'(1))^2 = \lambda^2 + \lambda - \lambda^2 = \lambda \]

Generating function - the geometric distribution

\[\phi_{geo}(s) = \sum_{x=1}^{\infty} p_x = \left(\frac{1 - p}{1 - s} \right)^{x-1} p \]

\[= \sum_{x=1}^{\infty} s(s(1 - p))^{x-1} p \]

A useful power series is:

\[\sum_{i=0}^{N} a_i = \begin{cases} 1 - \frac{a^{N+1}}{1-a} & N < \infty, a \neq 1 \\ N+1 & N < \infty, a = 1 \\ \frac{1}{1-a} & N = \infty, |a| < 1 \end{cases} \]

And we get \[\phi_{geo}(s) = \frac{sp}{1 - s(1 - p)} \]

Generating function for random sum

\[h_X(s) = g_N(\phi(s)) \]

Applied for the branching process we get

\[\phi_n(s) = \phi_{n-1}(\phi(s)) \]
Generating function for the sum of independent random variables

\[X \text{ with pdf } p_x \quad Y \text{ with pdf } q_y \]

\[Z = X + Y \text{ what is } r_z = P\{Z = z\}? \]

\[P\{Z = z\} = r_z = \sum_{i=0}^{z} p_i q_{z-i} \]

Theorem

(23) page 153 If \(X \) and \(Y \) are independent then

\[\phi_{X+Y}(s) = \phi_X(s) \phi_Y(s) \]

where \(\phi_X(s) \) and \(\phi_Y(s) \) are the generating functions of \(X \) and \(Y \)

Sum of two geometric random variables with the same \(p \)

\[X \sim \text{geo}(p) \quad Y \sim \text{geo}(p) \quad Z = X + Y \]

\[\phi_X(s) = \frac{sp}{1 - s(1 - p)} \quad \phi_Y(s) = \frac{sp}{1 - s(1 - p)} \]

\[P\{X = x\} = p_x = (1 - p)^{x-1} p \]

And we get

\[\phi_Z(s) = \phi_X(s) \phi_Y(s) = \left(\frac{sp}{1 - s(1 - p)} \right)^2 \]

The density of this distribution is

\[P\{Z = z\} = h(z) = (z - 1)(1 - p)^{z-2} p^2 \]

Negative binomial.

Sum of \(k \) geometric random variables with the same \(p \)

More generally - sum of \(k \) geometric variables

\[p_x = \left(\frac{x - 1}{k - 1} \right) (1 - p)^{x-k} p^k \quad \phi_X(s) = \left(\frac{sp}{1 - s(1 - p)} \right)^k \]

Characteristic function and other

- Characteristic function: \(E\left(e^{itX} \right) \)
- Moment generating function: \(E\left(e^{\theta X} \right) \)
- Laplace Stieltjes transform: \(E\left(e^{-sX} \right) \)

EXAMPLE: (exponential)

\[E\left(e^{\theta X} \right) = \int_0^\infty e^{\theta x} \lambda e^{-\lambda x} dx = \frac{\lambda}{\lambda - \theta}, \theta < \lambda \]