Stationary Ornstein-Uhlenbeck process

We define a bivariate normal vector X = ( ?1 )
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we can express the joint density as
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to get
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To ease notation and with no real loss of generality we assume p; = o =0
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and we rewrite to get

U%E (X2|X1 = xl) = po102%1, O'%E (X2|X1) = pO'lUgXl

to finally obtain

U%E (X2|X1) = Cov (Xl,XQ) Xl.

We now want to construct a one-dimensional Gaussian process where this relation holds for any pair
(X (t1), X (t2)), so we assume that the covariance function I'(t1,%2) = Cov((X(t1), X (¢2)) is time ho-
mogenous such that Cov((X(t1), X (t2)) = ['(t2 —t1). Our assumption amounts to o2IE (X ()| X (0)) =
I['(t)X(0) or I'(0O)E (X ()| X (0)) = I'(¢) X (0) We now evaluate I'(t; + t2).

L(ti +t2) = E[X(0)X(t1 +1t2)] = E[E(X(0)X(t1 +t2)|X(0), X (t1))]
= E[X(0)E(X(t: +t2)|X(0), X(t1))] = E[X(0)E(X (t1 + t2)| X (1)) = E X(O)%F(tQ)X(tl)
= ST()T(),

and get the functional equation
o’ T(t; +to) = T'(t1)T(ta),
with solution
D(t) = o2el

for some a. We have defined a stationary Gaussian process with X (¢) ~ N(0,02), i.e. u(t) = 0 and

covariance function I'(t) = a2e~?I*l. This process is called the stationary Ornstein-Uhlenbeck process.

The approach is taken from [I] Section 9.6 Page 407.
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