Stationary Ornstein-Uhlenbeck process
02407 Stochastic Processes
2020-11-25
BFN/bfn
We define a bivariate normal vector $\boldsymbol{X}=\binom{X_{1}}{X_{2}}$

$$
\binom{X_{1}}{X_{2}} \sim \mathrm{~N}\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\right)
$$

With

$$
\boldsymbol{x}=\binom{x_{1}}{x_{2}}, \quad \boldsymbol{\mu}=\binom{\mu_{1}}{\mu_{2}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

we can express the joint density as

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi \sqrt{\operatorname{det}(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})} \\
& =\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho \frac{x_{1}-\mu_{1}}{\sigma_{1}} \frac{x_{2}-\mu_{2}}{\sigma_{2}}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}}
\end{aligned}
$$

we have the conditional density
$f_{X_{2} \mid X_{1}=x_{1}}\left(x_{2}\right)=\frac{\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho \frac{x_{1}-\mu_{1}}{\sigma_{1}} \frac{x_{2}-\mu_{2}}{\sigma_{2}}+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}}}{\frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}}=\frac{1}{\sqrt{2 \pi} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{\left(x_{2}-\mu_{2}-\rho \frac{\left.\sigma_{2}\left(x_{1}-\mu_{1}\right)\right)^{2}}{2 \sigma_{2}^{2}\left(1-\rho^{2}\right)}\right.}{}}$
to get

$$
\mathbb{E}\left(X_{2} \mid X_{1}=x_{1}\right)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right), \quad \mathbb{E}\left(X_{2} \mid X_{1}\right)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X_{1}-\mu_{1}\right)
$$

or

$$
\mathbb{E}\left(X_{2}-\mu_{2} \mid X_{1}=x_{1}\right)=\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right), \quad \mathbb{E}\left(X_{2}-\mu_{2} \mid X_{1}\right)=\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X_{1}-\mu_{1}\right)
$$

To ease notation and with no real loss of generality we assume $\mu_{1}=\mu_{2}=0$

$$
\mathbb{E}\left(X_{2} \mid X_{1}=x_{1}\right)=\rho \frac{\sigma_{2}}{\sigma_{1}} x_{1}, \quad \mathbb{E}\left(X_{2}-\mu_{2} \mid X_{1}\right)=\rho \frac{\sigma_{2}}{\sigma_{1}} X_{1}
$$

and we rewrite to get

$$
\sigma_{1}^{2} \mathbb{E}\left(X_{2} \mid X_{1}=x_{1}\right)=\rho \sigma_{1} \sigma_{2} x_{1}, \quad \sigma_{1}^{2} \mathbb{E}\left(X_{2} \mid X_{1}\right)=\rho \sigma_{1} \sigma_{2} X_{1}
$$

to finally obtain

$$
\sigma_{1}^{2} \mathbb{E}\left(X_{2} \mid X_{1}\right)=\mathbb{C o v}\left(X_{1}, X_{2}\right) X_{1} .
$$

We now want to construct a one-dimensional Gaussian process where this relation holds for any pair $\left(X\left(t_{1}\right), X\left(t_{2}\right)\right)$, so we assume that the covariance function $\Gamma\left(t_{1}, t_{2}\right)=\operatorname{Cov}\left(\left(X\left(t_{1}\right), X\left(t_{2}\right)\right)\right.$ is time homogenous such that $\operatorname{Cov}\left(\left(X\left(t_{1}\right), X\left(t_{2}\right)\right)=\Gamma\left(t_{2}-t_{1}\right)\right.$. Our assumption amounts to $\sigma^{2} \mathbb{E}(X(t) \mid X(0))=$ $\Gamma(t) X(0)$ or $\Gamma(0) \mathbb{E}(X(t) \mid X(0))=\Gamma(t) X(0)$ We now evaluate $\Gamma\left(t_{1}+t_{2}\right)$.

$$
\begin{aligned}
\Gamma\left(t_{1}+t_{2}\right) & =\mathbb{E}\left[X(0) X\left(t_{1}+t_{2}\right)\right]=\mathbb{E}\left[\mathbb{E}\left(X(0) X\left(t_{1}+t_{2}\right) \mid X(0), X\left(t_{1}\right)\right)\right] \\
& =\mathbb{E}\left[X(0) \mathbb{E}\left(X\left(t_{1}+t_{2}\right) \mid X(0), X\left(t_{1}\right)\right)\right]=\mathbb{E}\left[X(0) \mathbb{E}\left(X\left(t_{1}+t_{2}\right) \mid X\left(t_{1}\right)\right)\right]=\mathbb{E}\left[X(0) \frac{1}{\sigma^{2}} \Gamma\left(t_{2}\right) X\left(t_{1}\right)\right] \\
& =\frac{1}{\sigma^{2}} \Gamma\left(t_{1}\right) \Gamma\left(t_{2}\right),
\end{aligned}
$$

and get the functional equation

$$
\sigma^{2} \Gamma\left(t_{1}+t_{2}\right)=\Gamma\left(t_{1}\right) \Gamma\left(t_{2}\right)
$$

with solution

$$
\Gamma(t)=\sigma^{2} e^{-\alpha|t|}
$$

for some α. We have defined a stationary Gaussian process with $X(t) \sim \mathrm{N}\left(0, \sigma^{2}\right)$, i.e. $\mu(t)=0$ and covariance function $\Gamma(t)=\sigma^{2} e^{-\alpha|t|}$. This process is called the stationary Ornstein-Uhlenbeck process.

The approach is taken from [1 Section 9.6 Page 407.

References

[1] G. R. Grimmett and D. R. Stirzacker. Probability and Random Processes. Oxford University Press, third edition, 1995.

