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■ Stochastic experiments

■ The probability triple (Ω,F ,P):

◆ Ω: The sample space, ω ∈ Ω

◆ F : The set of events, A ∈ F ⇒ A ⊂ Ω

◆ P: The probability measure, A ∈ F ⇒ P(A) ∈ [0, 1]

■ Random variables

■ Distribution functions

■ Conditioning
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■ Stochastic processes is applied probability

■ A firm understanding of probability (as taught in e.g. 02405)
will get you far

■ We need a more solid basis than most students develop in
e.g. 02405.

What to recap?
The concepts are most important: What is a stochastic variable,
what is conditioning, etc.
Specific models and formulas: That a binomial distribution
appears as the sum of Bernoulli variates, etc.
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We perform a stochastic experiment.

We use ω to denote the outcome.
The sample space Ω is the set of all possible outcomes.

ω

Ω
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Ω can be a very simple set, e.g.

■ {H,T} (tossing a coin a.k.a. Bernouilli experiment)

■ {1, 2, 3, 4, 5, 6} (throwing a die once).

■ N (typical for single discrete stochastic variables)

■ R
d (typical for multivariate continuous stochastic variables)

or a more complicated set, e.g.

■ The set of all functions R 7→ R
d with some regularity

properties.

Often we will not need to specify what Ω is.
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Events are sets of outcomes/subsets of Ω
Events correspond to statements about the outcome.

For a die thrown once, the
event

A = {1, 2, 3}

corresponds to the statement
“the die showed no more than
three”.

ω

Ω
A
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A Probability is a set measure of an event
If A is an event, then

P(A)

is the probability that the event A occurs in the stochastic
experiment - a number between 0 and 1.
(What exactly does this mean? C.f. G&S p 5, and appendix III)
Regardless of interpretation, we can pose simle conditions for
mathematical consistency.
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An important question: Which events are “measurable”, i.e.
have a probability assigned to them?
We want our usual logical reasoning to work!
So: If A and B are legal statements, represented by measurable
subsets of Ω, then so are

■ Not A, i.e. Ac = Ω\A

■ A or B, i.e. A ∪B.
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Set Statement

A “The event A occured” (ω ∈ A)
Ac Not A

A ∩B A and B
A ∪B A or B

(A ∪B)\(A ∩B) A exclusive-or B

See also table 1.1 in Grimmett & Stirzaker, page 3
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For the Bernoulli experiment, we need statements like

At least one experiment shows heads

or

In the long run, every other experiment shows heads.

So: If Ai are events for i ∈ N, then so is ∪i∈NAi.
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Definition:

1. The empty set is an event, ∅ ∈ F

2. Given a countable set of events A1, A2, . . ., its union is also
an event, ∪i∈NAi ∈ F

3. If A is an event, then so is the complementary set Ac.
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1. F = {∅,Ω}
This is the deterministic case: All statements are either true
(∀ω) or false (∀ω).

2. F = {∅, A,Ac,Ω}
This corresponds to the Bernoulli experiment or tossing a
coin: The event A corresponds to “heads”.

3. F = 2Ω = set of all subsets of Ω.

When Ω is finite or enumerable, we can actually work with 2Ω;
otherwise not.
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1. P(∅) = 0 , P(Ω) = 1

2. If A1, A2, . . . are mutually excluding events (ie. Ai ∩Aj = ∅
for i 6= j), then

P(∪∞
i=1Ai) =

∞
∑

i=1

P(Ai)

A P : F 7→ [0, 1] satisfying these is called a probability measure.
The triple (Ω,F ,P) is called a probability space.
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In stochastic processes, we want to know what to expect from
the future, conditional on our past observations.

Ω

BA
A^B

BA^B

P(A|B) =
P(A ∩B)

P(B)
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If you are not careful about specifying the events involved, you
can easily obtain wrong conclusions.

Example: A family has two children. Each child is a boy with
probability 1/2, independently of the other. Given that at least
one is a boy, what is the probability that they are both boys?
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If you are not careful about specifying the events involved, you
can easily obtain wrong conclusions.

Example: A family has two children. Each child is a boy with
probability 1/2, independently of the other. Given that at least
one is a boy, what is the probability that they are both boys?

The meaningless answer:

P(two boys|at least one boy) = P(other child is a boy) =
1

2
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If you are not careful about specifying the events involved, you
can easily obtain wrong conclusions.

Example: A family has two children. Each child is a boy with
probability 1/2, independently of the other. Given that at least
one is a boy, what is the probability that they are both boys?

The meaningless answer:

P(two boys|at least one boy) = P(other child is a boy) =
1

2

The right answer:

P(two boys|at least one boy) =
P(two boys)

P(at least one boy)
=

1/4

3/4
=

1

3
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Let B1, . . . , Bn be a partition of Ω

(ie., mutually disjoint and ∪n
i=1Bi = Ω)

Then

P (A) =

n
∑

i=1

P(A|Bi)P(Bi)
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Events A and B are called independent if

P(A ∩B) = P(A)P(B)

When 0 < P(B) < 1, this is the same as

P(A|B) = P(A) = P(A|Bc)

A family {Ai : i ∈ I} of events is called independent if

P(∩i∈JAi) =
∏

i∈J

P(Ai)

for any finite subset J of I.
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Informally: A quantity which is assigned by a stochastic
experiment.
Formally: A mapping X : Ω 7→ R.
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Informally: A quantity which is assigned by a stochastic
experiment.
Formally: A mapping X : Ω 7→ R.

A Technical comment We want the probabilities P(X ≤ x) to
be well defined. So we require

∀x ∈ R : {ω : X(ω) ≤ x} ∈ F
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Indicator functions:

X(ω) = IA(ω) =

{

1 when ω ∈ A,
0 else.

Bernoulli variables:

Ω = {H,T}, X(H) = 1, X(T ) = 0.
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F (x) = P(X ≤ x)

Properties:

1. limx→−∞ F (x) = 0, limx→+∞ F (x) = 1.

2. x < y ⇒ F (x) ≤ F (y)

3. F is right-continuous, ie. F (x+ h) → F (x) as h ↓ 0.
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Discrete variables: ImX is a countable set. So FX is a step
function. Typically ImX ⊂ Z.
Continuous variables: X has a probability density function

(pdf) f , i.e.

F (x) =

∫ x

−∞
f(u) du

so F is differentiable.
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Let X ∼ U(0, 1), i.e. uniform on [0, 1] so that

FX(x) = x for 0 ≤ x ≤ 1.

Toss a fair coin. If heads, then set Y = X. If tails, then set
Y = 0.

FY (y) =
1

2
+

1

2
x for 0 ≤ y ≤ 1.

We say that Y has an atom at 0.
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The mean of a stochastic variable is

EX =
∑

i∈Z

iP(X = i)

in the discrete case, and

EX =

∫ +∞

−∞
f(x) dx

in the continuous case. In both cases we assume that the
sum/integral exists absolutely.
The variance of X is

VX = E(X − Ex)2 = EX2 − (EX)2
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The conditional expectation is the mean in the conditional
distribution

E(Y |X = x) =
∑

y

yfY |X(y|x)

It can be seen as a stochastic variable: Let ψ(x) = E(Y |X = x),
then ψ(X) is the conditional expectation of Y given X

ψ(X) = E(Y |X)

We have
E(E(Y |X)) = EY
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is the variance in the conditional distribution.

V(Y |X = x) =
∑

y

(y − ψ(x))2fY |X(y|x)

This can also be written as

V(Y |X) = E(Y 2|X) − (E(Y |X))2

and can be manipulated into (try it!)

VY = EV(Y |X) + VE(Y |X)

which partitions the variance of Y .
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When a single stochastic experiment defines the value of several
stochastic variables.
Example: Throw a dart. Record both vertical and horizontal
distance to center.

X = (X1, . . . , Xn) : Ω 7→ R
n

Also random vectors are characterised by the distribution
function F : Rn 7→ [0, 1]:

F (x) = P(X1 ≤ x1, . . . , Xn ≤ xn)

where x = (x1, . . . , xn).
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In one experiment, we toss two fair coins and assign the results
to V and X.

In another experiment, we toss one fair coin and assign the
result to both Y and Z.

V , X, Y and Z are all identically distributed.

But (V,X) and (Y, Z) are not identically distributed.

E.g. P(V = X = heads) = 1/4 while P(Y = Z = heads) = 1/2.
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Start with working out one single Bernoulli experiment.

Then consider a finite number of Bernoulli experiments: The
binomial distribution

Next, a sequence of Bernoulli experiments: The Bernoulli
process.

Waiting times in the Bernoulli process: The negative binomial
distribution.
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A Bernoulli experiment models e.g. tossing a coin.

The sample space is Ω = {H,T}.

Events are F = {∅, {H}, {T},Ω} = 2Ω = {0, 1}Ω.

The probability P : F 7→ [0, 1] is defined by (!)

P({H}) = p .

The stochastic variable X : Ω 7→ R with

X(H) = 1 X(T ) = 0

is Bernoulli distributed with parameter p.
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We toss a coin n times.

The sample space is Ω = {H,T}n.

For the case n = 2, this is {TT, TH,HT,HH}.

Events are F = 2Ω = {0, 1}Ω.

How many events are there? |F| = 2|Ω| = 2(2n) (a lot).

Introduce Ai for the event “the i’th toss showed heads”.
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The probability P : F 7→ [0, 1] is defined by

P(Ai) = p

and by requiring that

the events {Ai : i = 1, . . . , n} are independent.

From this we derive

P({ω}) = pk(1 − p)n−k if ω has k heads and n− k tails.

and from that the probability of any event.
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Define the stochastic variable X as number of heads

X =

n
∑

i=1

1(Ai)

To find its probability mass function, consider the events

P(X = x) which is shorthand for P({ω : X(ω) = x})

This event {X = x} has
(

n
x

)

elements. Each ω ∈ {X = x} has
probability

P(ω) = px(1 − p)n−x

so the probability is

P(X = x) =

(

n

x

)

px(1 − p)n−x
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Probability mass function
fX(x) = P(X = x) =

(

n

x

)

px(1−p)n−x

Cumulated distribution function FX(x) = P(X ≤ x) =

x
∑

i=0

fX(i)

Mean value
EX = E

n
∑

i=1

1(Ai) =
n

∑

i=1

P(Ai) = np

Variance
VX =

n
∑

i=1

V1(Ai) = np(1−p)

because {Ai : i = 1, . . . n} are (pairwise) independent.
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Let X ∼ B(n, p) and Y ∼ B(m, p) be independent.
Show that Z = X + Y ∼ B(n+m, p)
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Let X ∼ B(n, p) and Y ∼ B(m, p) be independent.
Show that Z = X + Y ∼ B(n+m, p)
Solution:
Consider m+ n independent Bernoulli trials, each w.p. p.

Set X =
∑n

i=1 1(Ai) and Y =
∑n+m

i=n+1 1(Ai).

Then X and Y are as in the problem, and

Z =
n+m
∑

i=1

1(Ai) ∼ B(n, p)
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A sequence of Bernoulli experiments.

The sample space Ω is the set of functions N 7→ {0, 1}.

Introduce events Ai for “the ith toss showed heads”.

Strictly: Ai = {ω : ω(i) = 1}

Let F be the smallest σ-field that contains all Ai.
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Define (!) P : F 7→ [0, 1] by

P(Ai) = p

and
{Ai : i ∈ N} are independent.
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Define (!) P : F 7→ [0, 1] by

P(Ai) = p

and
{Ai : i ∈ N} are independent.
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Let Wr be the waiting time for the rth succes:

Wt = min{i :

i
∑

j=1

1(Aj) = r}

To find the probability mass function of Wr, note that Wr = k is
the same event as

(
k−1
∑

i=1

1(Ai) = r − 1) ∩Ak

Since the two events involved here are independent, we get

fW (k) = P(Wr = k) =

(

k − 1

r − 1

)

pr(1 − p)k−r
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The waiting time W to the first success

P(W = k) = (1 − p)k−1p

(First k − 1 failures and then one success)

The survival function is

GW (k) = P(W > k) = (1 − p)k



Summary

Elements of basic
probability theory

Why recap
probability theory?

The set-up of
probability theory

Conditional
probabilities

Stochastic variables
FX , the cumulated
distribution function
(cdf)

Discrete and
continuous variables
Conditional
expectation

The Bernoulli
process

Summary

39 / 39

We need be precise in our use of probability theory, at least until
we have developed intuition.

When in doubt, ask: What is the stochastic experiment? What
is the probability triple? Which event am I considering?

Venn diagrams a very useful. This holds particularly for
conditioning, which is central to stochastic processes.

Indicator functions are powerful tools, once mastered.

You need to know the distributions that can be derived from the
Bernoulli process: The binomial, geometric, and negative
binomial distribution.
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