Exercise 19 (2/1/95 ex.3)

Frequently a model denoted as IPP (Interrupted Poisson Process) is applied as a model for point processes, more irregular than the Poisson process. The process is a twostate continuous time Markov chain, filtrering a Poisson process with intensity λ. The sojourn time in the ON state is exponentially distributed with mean $\frac{1}{\omega_{1}}$, while the sojourn time in the OFF staet is exsponentially distributed with mean value $\frac{1}{\omega_{2}}$. The filtrering implies that arrivals in the Poisson process while the state variabel $\mathrm{X}(\mathrm{t})$ of the Markov chain has the value $\mathrm{X}(\mathrm{t})=\mathrm{ON}$ is registrered or accepted while arrivals while $\mathrm{X}(\mathrm{t})=\mathrm{OFF}$ is canceled (deleted.

Question 1

What is the long term fraction of time with the Markov chain in the ON state.

Question 2

What is the long run average number of arrivals pr. tume unit.

Question 3

Present an expression for the marginal distribution of the time between two consecutive arrivals. Is the process a renewal process ?

We will now consider a superposition of two independent Interrupted Poisson Processes. Both processes are assumed to be stationary, that is the distribution of $\mathrm{X}(\mathrm{t})$ does not depend on t.

Question 4

What is the probability the both processes will be in the ON state simultaneously.

We will next consider a superposition of N such processes.

Question 5

What is the probability that exactly i of these processes vill be in the ON state simultaneously.

For one of these processes we can express $\operatorname{Var}(\mathrm{N}(\mathrm{t}))$, where $\mathrm{N}(\mathrm{T})$ is the number of arrivals in the time interval $[0, \mathrm{t}$ [by the expression:

$$
\operatorname{Var}(N(t))=\frac{\lambda \omega_{2} t}{\omega_{1}+\omega_{2}}+\frac{2 \lambda^{2} \omega_{1} \omega_{2} t}{\left(\omega_{1}+\omega_{2}\right)^{3}}\left(1-\frac{1}{\left(\omega_{1}+\omega_{2}\right) t}\left(1-e^{-\left(\omega_{1}+\omega_{2}\right) t}\right)\right)
$$

Question 6

Determine the relation $\frac{\operatorname{Var}(N(t))}{\mathrm{E}(N(t))}$ for the superposition of the N processes.

