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Solution for exercise 5.3.1 in Pitman 1

Question a) With R being the distance from the bulls eye to the shot we have
(page 360, line 4 from the bottom)

P (R ≤ r) = FR(r) = 1− e−
1
2
r2

See the figure below. Thus
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= 1− e−
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8 = −0.1175
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Question b)

P (1 ≤ R ≤ 2) = FR(2)− FR(1)=e−
1
2 − e−2 = 0.4712

we get 1
4
· 0.4712 = 0.1178 due to the symmetry (see the figure below).
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Question c) We are considering only the second coordinate, which is a stan-
dard normal variable. The mean of the absolute value is given page 484 (under other
moments).

E(|Y |) =

√
2

π

Question d) This is the probability that the absolute value of the first coordinate
is less than or equal to r =

√
2 log (2) ≈ 1.1777 (see the figure below). So,

Φ(r)− Φ(−r)=Φ(r)− (1− Φ(r)) = 2Φ(r)− 1 ≈ 2Φ(1.18)− 1 = 0.762
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For random variable
Xmax = max{X1, X2, . . . , Xn}
we have the cumulative distribution
function Fmax(x) = P (Xmax ≤ x) =
P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x) =
F1(x)F2(x) . . . Fn(x)

Question e) This is the probability that the largest absolute value of the two
coordinates is less than or equal to r. Thus from page 316, we get

(2Φ(r)− 1)2 ≈ (2Φ(1.18)− 1)2 = 0.581



Question f) Use rotational symmetry and find similarly to e)(
2Φ

(
r√
2

)
− 1

)2

= 0.352?
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We notice from the red triangle in the fig-
ure that r2 = 2b2,
where r is the radius of the circle and hy-
potenuse of the triangle, and b is the two
catheti. Thus,

r2

2
= b2 ⇔
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Question g) From the picture on page 367 we can see that this is just half of the
probability from question e). That is

1

2
(2Φ(r)− 1)2 = 0.29


