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Solution for exercise 1.6.8 in Pitman 1

Question a) The events Bij occur with probability

P (Bij)=
1

365

It is immediately clear that

P (B12 ∩B23)=
1

3652
=P (B12)P (B23)?.

implying independence. The following is a more formal and lengthy argument. Define

Ai,j as the the event that the i’th person is born the j’th day of the year.

We have P (Ai,j) = 1
365

and that A1i , A2,j, and A3,k are independent. The event Bij

can be expressed by
Bij = ∪365

k=1 (Ai,k ∩ Aj,k)

such that P (Bij) = 1
365

by the independence of Ai,k and Aj,k. The event B12 ∩B23 can
be expressed by

B12 ∩B23 = ∪365
k=1 (A1,k ∩ A2,k ∩ A3,k)

and by the independence of the A’s we get P (B12 ∩B23) = 1
3652

Consider the conditional prob-
ability P (B23|B12). In words,
what is the probability of B23

given we know that B12 is the
case. Since the persons are born
on a day independent of each
other, person 3 can be born on
any day of the year (even though
person 1 and 2 has the same
birthday). So

P (B23|B12) = P (B23)

and,

P (B12|B23) = P (B12)

which implies independence be-
tween B12 and B23.

Question b) The probability

P (B13|B12 ∩B23)=1 6= P (B13)?

thus, the events B12, B13, B23 are not independent.

The event B12 ∩ B23 results in
exactly the same birthday for
person 1, 2, and 3. I.e. if this is
the case, there is only one day to
pick from for B13. So

P (B13|B12 ∩B23) = 1

and

P (B13) =
1

365

Question c) Pairwise independence follows from a)
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