IMM - DTU	02405 Probability
	$2003-11-19$
	BFN/bfn

Question a) The conditional distribution of Z for $W=w$ is normal leading to

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)
$$

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

$$
f(z, w)=\frac{1}{2 \pi} e^{-\frac{1}{2}()^{2}}
$$

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

$$
f(z, w)=\frac{1}{2 \pi} e^{-\frac{1}{2}()^{2}}
$$

Question b) Z is normal distributed with parameters

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

$$
f(z, w)=\frac{1}{2 \pi} e^{-\frac{1}{2}()^{2}}
$$

Question b) Z is normal distributed with parameters

$$
E(Z)=E(E(Z \mid W))
$$

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

$$
f(z, w)=\frac{1}{2 \pi} e^{-\frac{1}{2}()^{2}}
$$

Question b) Z is normal distributed with parameters

$$
E(Z)=E(E(Z \mid W))=E(a \cdot w+b)
$$

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

$$
f(z, w)=\frac{1}{2 \pi} e^{-\frac{1}{2}()^{2}}
$$

Question b) Z is normal distributed with parameters

$$
\begin{aligned}
& E(Z)=E(E(Z \mid W))=E(a \cdot w+b)=a \mu+b, \text { and } \\
& \operatorname{Var}(Z)
\end{aligned}
$$

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

$$
f(z, w)=\frac{1}{2 \pi} e^{-\frac{1}{2}()^{2}}
$$

Question b) Z is normal distributed with parameters

$$
\begin{aligned}
& E(Z)=E(E(Z \mid W))=E(a \cdot w+b)=a \mu+b, \text { and } \\
& \operatorname{Var}(Z)=\operatorname{Var}(E(Z \mid W))+E(\operatorname{Var}(Z \mid W))
\end{aligned}
$$

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

$$
f(z, w)=\frac{1}{2 \pi} e^{-\frac{1}{2}()^{2}}
$$

Question b) Z is normal distributed with parameters

$$
\begin{aligned}
& E(Z)=E(E(Z \mid W))=E(a \cdot w+b)=a \mu+b, \text { and } \\
& \operatorname{Var}(Z)=\operatorname{Var}(E(Z \mid W))+E(\operatorname{Var}(Z \mid W))=\operatorname{Var}(a \cdot w+b)+E\left(\tau^{2}\right)=a^{2} \sigma^{2}+\tau^{2}
\end{aligned}
$$

IMM - DTU

Question a) The conditional distribution of Z for $W=w$ is normal leading to

$$
f_{Z}(z \mid w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}}
$$

The boxed result page 416 gives

$$
f(z, w)=f_{z}(z \mid w) f_{W}(w)
$$

Now W is normal thus

$$
f(z, w)=\frac{1}{\sqrt{2 \pi} \tau} e^{-\frac{1}{2}\left(\frac{z-a \cdot w-b}{\tau}\right)^{2}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{w-\mu}{\sigma}\right)^{2}}
$$

After some trivial but tedious algebra we get

$$
f(z, w)=\frac{1}{2 \pi} e^{-\frac{1}{2}()^{2}}
$$

Question b) Z is normal distributed with parameters

$$
\begin{aligned}
& E(Z)=E(E(Z \mid W))=E(a \cdot w+b)=a \mu+b, \text { and } \\
& \operatorname{Var}(Z)=\operatorname{Var}(E(Z \mid W))+E(\operatorname{Var}(Z \mid W))=\operatorname{Var}(a \cdot w+b)+E\left(\tau^{2}\right)=a^{2} \sigma^{2}+\tau^{2}
\end{aligned}
$$

Question c)

