Question a)

P(X > kY)

02405 Probability 2004-5-13 BFN/bfn

Question a)

02405 Probability 2004-5-13 BFN/bfn

$$P(X > kY) = P(X - kY > 0)$$

Question a)

02405 Probability 2004-5-13 BFN/bfn

P(X > kY) = P(X - kY > 0)

From the boxed result page 363

02405 Probability 2004-5-13 BFN/bfn

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that ${\cal Z}={\cal X}-kY$

02405 Probability 2004-5-13 BFN/bfn

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that ${\cal Z}={\cal X}-kY$ is $normal(0,1+k^2)$ distributed,

02405 Probability 2004-5-13 BFN/bfn

Question a)

P(X > kY) = P(X - kY > 0)

From the boxed result page 363 we know that Z=X-kY is $normal(0,1+k^2)$ distributed, thus P(X-kY>0)

02405 Probability 2004-5-13 BFN/bfn

Question a)

P(X > kY) = P(X - kY > 0)

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$.

02405 Probability 2004-5-13 BFN/bfn

Question a)

P(X > kY) = P(X - kY > 0)

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$.

Question b) Arguing along the same lines we find

02405 Probability 2004-5-13 $\mathsf{BFN}/\mathsf{bfn}$

Question a)

P(X > kY) = P(X - kY > 0)

From the boxed result page 363 we know that ${\boldsymbol Z} = {\boldsymbol X} - k {\boldsymbol Y}$ is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find P(U > kV)

02405 Probability 2004-5-13 BFN/bfn

Question a)

P(X > kY) = P(X - kY > 0)

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

02405 Probability 2004-5-13 BFN/bfn

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question c)

$$P(U^2 + V^2 < 1)$$

02405 Probability 2004-5-13 BFN/bfn

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question c)

$$P(U^2 + V^2 < 1) = P(3X^2 + Y^2 + 2\sqrt{3}XY + X^2 + 3Y^2 - 2\sqrt{3}XY < 1)$$

02405 Probability 2004-5-13 BFN/bfn

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question c)

$$P(U^2+V^2<1) = P(3X^2+Y^2+2\sqrt{3}XY+X^2+3Y^2-2\sqrt{3}XY<1) = P\left(X^2+Y^2<\frac{1}{4}\right)$$
 (now using $X^2+Y^2 \in$

02405 Probability 2004-5-13 BFN/bfn

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question b) Arguing along the same lines we find P(U > kV) =Question c)

$$P(U^2 + V^2 < 1) = P(3X^2 + Y^2 + 2\sqrt{3}XY + X^2 + 3Y^2 - 2\sqrt{3}XY < 1) = P\left(X^2 + Y^2 < \frac{1}{4}\right)$$

(now using $X^2 + Y^2 \in exponential(0.5)$

02405 Probability 2004-5-13 BFN/bfn

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question c)

$$P(U^2 + V^2 < 1) = P(3X^2 + Y^2 + 2\sqrt{3}XY + X^2 + 3Y^2 - 2\sqrt{3}XY < 1) = P\left(X^2 + Y^2 < \frac{1}{4}\right)$$

(now using $X^2 + Y^2 \in exponential(0.5)$ (page 360, 364-366, 485))

02405 Probability 2004-5-13 BFN/bfn

,

. .

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question b) Arguing along the same lines we find P(U > kV)Question c)

$$P(U^2 + V^2 < 1) = P(3X^2 + Y^2 + 2\sqrt{3}XY + X^2 + 3Y^2 - 2\sqrt{3}XY < 1) = P\left(X^2 + Y^2 < \frac{1}{4}\right)$$

(now using $X^2 + Y^2 \in exponential(0.5)$ (page 360, 364-366, 485))

 $= 1 - e^{-\frac{1}{8}}$

02405 Probability 2004-5-13 BFN/bfn

,

. .

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question b) Arguing along the same lines we find $P(U > \kappa)$ Question c)

$$P(U^2 + V^2 < 1) = P(3X^2 + Y^2 + 2\sqrt{3}XY + X^2 + 3Y^2 - 2\sqrt{3}XY < 1) = P\left(X^2 + Y^2 < \frac{1}{4}\right)$$

(now using $X^2 + Y^2 \in exponential(0.5)$ (page 360, 364-366, 485))

$$= 1 - e^{-\frac{1}{8}} = 0.118$$

02405 Probability 2004-5-13 BFN/bfn

,

. .

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question b) Arguing along the same lines we find P(U > kV)Question c)

$$P(U^2 + V^2 < 1) = P(3X^2 + Y^2 + 2\sqrt{3}XY + X^2 + 3Y^2 - 2\sqrt{3}XY < 1) = P\left(X^2 + Y^2 < \frac{1}{4}\right)$$

(now using $X^2 + Y^2 \in exponential(0.5)$ (page 360, 364-366, 485))

$$= 1 - e^{-\frac{1}{8}} = 0.118$$

Question d)

X

02405 Probability 2004-5-13 BFN/bfn

Question a)

$$P(X > kY) = P(X - kY > 0)$$

From the boxed result page 363 we know that Z = X - kY is $normal(0, 1 + k^2)$ distributed, thus $P(X - kY > 0) = \frac{1}{2}$. Question b) Arguing along the same lines we find $P(U > kV) = \frac{1}{2}$.

Question c)

$$P(U^2 + V^2 < 1) = P(3X^2 + Y^2 + 2\sqrt{3}XY + X^2 + 3Y^2 - 2\sqrt{3}XY < 1) = P\left(X^2 + Y^2 < \frac{1}{4}\right)$$

(now using $X^2 + Y^2 \in exponential(0.5)$ (page 360, 364-366, 485))

$$= 1 - e^{-\frac{1}{8}} = 0.118$$

Question d)

$$X = v + \sqrt{3}Y \in normal(v,3)$$