IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)
$$

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630.

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630.

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)
$$

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)
$$

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x
$$

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x=0
$$

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x=0
$$

thus X and Y are uncorrelated.

IMM - DTU
02405 Probability
2003-11-12
BFN/bfn
Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x=0
$$

thus X and Y are uncorrelated.
Question b) We have

$$
P\left(\left.Y>\frac{1}{4}| | X \right\rvert\,>\frac{1}{2}\right)
$$

IMM - DTU

02405 Probability
2003-11-12
BFN/bfn

Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x=0
$$

thus X and Y are uncorrelated.
Question b) We have

$$
P\left(\left.Y>\frac{1}{4}| | X \right\rvert\,>\frac{1}{2}\right)=1
$$

IMM - DTU

02405 Probability
2003-11-12
BFN/bfn

Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x=0
$$

thus X and Y are uncorrelated.
Question b) We have

$$
P\left(\left.Y>\frac{1}{4}| | X \right\rvert\,>\frac{1}{2}\right)=1 \neq
$$

IMM - DTU

02405 Probability
2003-11-12
BFN/bfn

Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x=0
$$

thus X and Y are uncorrelated.
Question b) We have

$$
P\left(\left.Y>\frac{1}{4}| | X \right\rvert\,>\frac{1}{2}\right)=1 \neq \frac{1}{2}=
$$

IMM - DTU

02405 Probability
2003-11-12
BFN/bfn

Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x=0
$$

thus X and Y are uncorrelated.
Question b) We have

$$
P\left(\left.Y>\frac{1}{4}| | X \right\rvert\,>\frac{1}{2}\right)=1 \neq \frac{1}{2}=P\left(Y>\frac{1}{4}\right)
$$

IMM - DTU

02405 Probability
2003-11-12
BFN/bfn

Question a) We calculate the covariance of X and Y using the definition page 630 .

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=E(X Y)
$$

since $E(X)=0$ We calculate

$$
E(X Y)=E\left(X^{3}\right)=\int_{-1}^{1} x^{3} \frac{1}{2} \mathrm{~d} x=0
$$

thus X and Y are uncorrelated.
Question b) We have

$$
P\left(\left.Y>\frac{1}{4}| | X \right\rvert\,>\frac{1}{2}\right)=1 \neq \frac{1}{2}=P\left(Y>\frac{1}{4}\right)
$$

thus X and Y are not independent.

