IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed,

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$.

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|},
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)$

We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$

IMM - DTU

We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question c) Since Y for given $X=x$

IMM - DTU

We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question c) Since Y for given $X=x$ is uniformly distributed

IMM - DTU

We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question c) Since Y for given $X=x$ is uniformly distributed we can apply results for the uniform distribution,

IMM - DTU

We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question c) Since Y for given $X=x$ is uniformly distributed we can apply results for the uniform distribution, see e.g. the distribution summary page 477 or 487 .

IMM - DTU

We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question c) Since Y for given $X=x$ is uniformly distributed we can apply results for the uniform distribution, see e.g. the distribution summary page 477 or 487 . We get

$$
E(Y \mid X=x)
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question c) Since Y for given $X=x$ is uniformly distributed we can apply results for the uniform distribution, see e.g. the distribution summary page 477 or 487 . We get

$$
E(Y \mid X=x)=\frac{1-|x|}{2}
$$

IMM - DTU

We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question c) Since Y for given $X=x$ is uniformly distributed we can apply results for the uniform distribution, see e.g. the distribution summary page 477 or 487 . We get

$$
E(Y \mid X=x)=\frac{1-|x|}{2}
$$

Question c) Similarly

$$
\operatorname{Var}(Y \mid X=x)
$$

IMM - DTU

We note that Y for given $X=x$ is uniformly distributed, on $1+x$ for $-1<x<0$ and on $1-x$ for $0<x<1$. Thus

$$
F(y \mid x)=P(Y \leq y \mid X=x)=\frac{y}{1-|x|}, 0<y<1-|x|
$$

Question a) We have $P\left(\left.Y \geq \frac{1}{2} \right\rvert\, X=x\right)=1-F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question b) We have $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=x\right)=F\left(\left.\frac{1}{2} \right\rvert\, x\right)$
Question c) Since Y for given $X=x$ is uniformly distributed we can apply results for the uniform distribution, see e.g. the distribution summary page 477 or 487 . We get

$$
E(Y \mid X=x)=\frac{1-|x|}{2}
$$

Question c) Similarly

$$
\operatorname{Var}(Y \mid X=x)=\frac{(1-|x|)^{2}}{12}
$$

