IMM - DTU
02405 Probability
2003-11-13
BFN/bfn
Question a) We determine $P(X<Y)$ using the law of averaged conditional probabilities

IMM - DTU
02405 Probability
2003-11-13
BFN/bfn
Question a) We determine $P(X<Y)$ using the law of averaged conditional probabilities

$$
P(X<Y)
$$

IMM - DTU 02405 Probability
2003-11-13
BFN/bfn
Question a) We determine $P(X<Y)$ using the law of averaged conditional probabilities

$$
\begin{gathered}
P(X<Y)=P(X<Y \mid Y=0) P(Y=0)+P(X<Y \mid Y=1) P(Y=1) \\
+P(X<Y \mid Y=2) P(Y=2)+P(X<Y \mid Y=3) P(Y=3))+P(X<Y \mid Y \geq 4) P(Y \geq 4))
\end{gathered}
$$

IMM - DTU 02405 Probability
2003-11-13
BFN/bfn
Question a) We determine $P(X<Y)$ using the law of averaged conditional probabilities

$$
\begin{aligned}
P(X<Y) & =P(X<Y \mid Y=0) P(Y=0)+P(X<Y \mid Y=1) P(Y=1) \\
+P(X<Y \mid Y & =2) P(Y=2)+P(X<Y \mid Y=3) P(Y=3))+P(X<Y \mid Y \geq 4) P(Y \geq 4)) \\
& =1 \cdot e^{-\lambda}+\frac{2}{3} \lambda e^{-\lambda}+\frac{1}{3} \frac{\lambda^{2}}{2} e^{-\lambda}=e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2}\right)
\end{aligned}
$$

IMM - DTU 02405 Probability
2003-11-13
BFN/bfn
Question a) We determine $P(X<Y)$ using the law of averaged conditional probabilities

$$
\begin{aligned}
P(X<Y) & =P(X<Y \mid Y=0) P(Y=0)+P(X<Y \mid Y=1) P(Y=1) \\
+P(X<Y \mid Y & =2) P(Y=2)+P(X<Y \mid Y=3) P(Y=3))+P(X<Y \mid Y \geq 4) P(Y \geq 4)) \\
& =1 \cdot e^{-\lambda}+\frac{2}{3} \lambda e^{-\lambda}+\frac{1}{3} \frac{\lambda^{2}}{2} e^{-\lambda}=e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2}\right)
\end{aligned}
$$

leading to

IMM - DTU 02405 Probability
2003-11-13
BFN/bfn
Question a) We determine $P(X<Y)$ using the law of averaged conditional probabilities

$$
\begin{aligned}
P(X<Y) & =P(X<Y \mid Y=0) P(Y=0)+P(X<Y \mid Y=1) P(Y=1) \\
+P(X<Y \mid Y & =2) P(Y=2)+P(X<Y \mid Y=3) P(Y=3))+P(X<Y \mid Y \geq 4) P(Y \geq 4)) \\
& =1 \cdot e^{-\lambda}+\frac{2}{3} \lambda e^{-\lambda}+\frac{1}{3} \frac{\lambda^{2}}{2} e^{-\lambda}=e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2}\right)
\end{aligned}
$$

leading to

$$
P(X<Y)
$$

IMM - DTU 02405 Probability
2003-11-13
BFN/bfn
Question a) We determine $P(X<Y)$ using the law of averaged conditional probabilities

$$
\begin{aligned}
P(X<Y) & =P(X<Y \mid Y=0) P(Y=0)+P(X<Y \mid Y=1) P(Y=1) \\
+P(X<Y \mid Y & =2) P(Y=2)+P(X<Y \mid Y=3) P(Y=3))+P(X<Y \mid Y \geq 4) P(Y \geq 4)) \\
& =1 \cdot e^{-\lambda}+\frac{2}{3} \lambda e^{-\lambda}+\frac{1}{3} \frac{\lambda^{2}}{2} e^{-\lambda}=e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2}\right)
\end{aligned}
$$

leading to

$$
P(X<Y)=1-e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2}\right)
$$

Question b)
Question c)

