IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) We recall the definition of conditional probability

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) We recall the definition of conditional probability $P(A \mid B)$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

IMM - DTU

> 02405 Probability
> $2003-11-19$
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$

IMM - DTU

> 02405 Probability
> $2003-11-19$
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$

IMM - DTU

> 02405 Probability
> $2003-11-19$
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution

IMM - DTU

> 02405 Probability
> 2003-11-19
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

IMM - DTU

> 02405 Probability
> 2003-11-19
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)
$$

IMM - DTU

> 02405 Probability
> 2003-11-19
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\lambda_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{m} n_{i}\right)!} e^{-\lambda}}
$$

IMM - DTU

> 02405 Probability
> 2003-11-19
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\sum_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{m} n_{i}\right)!} e^{-\lambda}}
$$

such that with $n=\sum_{i=1}^{m} n_{i}$

IMM - DTU

> 02405 Probability
> 2003-11-19
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\sum_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{m} n_{i}\right)!} e^{-\lambda}}
$$

such that with $n=\sum_{i=1}^{m} n_{i}$

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)
$$

IMM - DTU

> 02405 Probability
> 2003-11-19
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\sum_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{m} n_{i}\right)!} e^{-\lambda}}
$$

such that with $n=\sum_{i=1}^{m} n_{i}$

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{m}!}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{1}}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{2}} \cdots\left(\frac{\lambda_{m}}{\lambda}\right)
$$

IMM - DTU

> 02405 Probability
> 2003-11-19
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\sum_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{m} n_{i}\right)!} e^{-\lambda}}
$$

such that with $n=\sum_{i=1}^{m} n_{i}$
$P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{m}!}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{1}}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{2}} \cdots\left(\frac{\lambda_{m}}{\lambda}\right)$
a multinomial distribution (page 155)

IMM - DTU

> 02405 Probability
> 2003-11-19
> BFN/bfn

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\sum_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{m} n_{i}\right)!} e^{-\lambda}}
$$

such that with $n=\sum_{i=1}^{m} n_{i}$

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{m}!}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{1}}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{2}} \cdots\left(\frac{\lambda_{m}}{\lambda}\right)
$$

a multinomial distribution (page 155) with probabilities $p_{i}=\frac{\lambda_{i}}{\lambda}$.

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\sum_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{m} n_{i}\right)!} e^{-\lambda}}
$$

such that with $n=\sum_{i=1}^{m} n_{i}$

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{m}!}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{1}}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{2}} \cdots\left(\frac{\lambda_{m}}{\lambda}\right)
$$

a multinomial distribution (page 155) with probabilities $p_{i}=\frac{\lambda_{i}}{\lambda}$.
Question b) Using

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)=P(N=n)
$$

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\sum_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{n} n_{i}\right)!} e^{-\lambda}}
$$

such that with $n=\sum_{i=1}^{m} n_{i}$

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{m}!}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{1}}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{2}} \cdots\left(\frac{\lambda_{m}}{\lambda}\right)
$$

a multinomial distribution (page 155) with probabilities $p_{i}=\frac{\lambda_{i}}{\lambda}$.
Question b) Using

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)=P(N=n) P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=\right.
$$

IMM - DTU

Question a) We recall the definition of conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$, such that

$$
\begin{gathered}
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right) \\
=\frac{P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)}{P\left(\sum_{i=1}^{m} N_{i}=n\right)}
\end{gathered}
$$

Now realising that $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \cap \sum_{i=1}^{m} N_{i}=n\right)=$ $P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)$ and using the fact that $N=\sum_{i=1}^{m} N_{i}$ has Poisson distribution with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$ we get

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{\prod_{i=1}^{m} \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{-\lambda_{i}}}{\frac{\lambda_{i=1}^{m} n_{i}}{\left(\sum_{i=1}^{m} n_{i}\right)!} e^{-\lambda}}
$$

such that with $n=\sum_{i=1}^{m} n_{i}$

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=n\right)=\frac{n!}{n_{1}!n_{2}!\cdots n_{m}!}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{1}}\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{2}} \cdots\left(\frac{\lambda_{m}}{\lambda}\right)
$$

a multinomial distribution (page 155) with probabilities $p_{i}=\frac{\lambda_{i}}{\lambda}$.
Question b) Using

$$
P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m}\right)=P(N=n) P\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots N_{m}=n_{m} \mid \sum_{i=1}^{m} N_{i}=\right.
$$

we see that the N_{i} 's are independent Poisson variables.

