IMM - DTU
02405 Probability
2003-11-11
The argument of example 2 page 375 ispeasjiblyngeneralized.

IMM - DTU 02405 Probability

The argument of example 2 page 375 ispapsibly generalized. Since X_{i} is gamma $\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

IMM - DTU 02405 Probability

The argument of example 2 page 375 ispapsibly generalized. Since X_{i} is gamma $\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

$$
X_{i}
$$

IMM - DTU
The argument of example 2 page 375 ispapsibly generalized. Since X_{i} is $\operatorname{gamma}\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

$$
X_{i}=\sum_{j=1}^{r_{i}} W_{i j}
$$

IMM - DTU
02405 Probability
2003-11-11
The argument of example 2 page 375 ispapsibly generalized. Since X_{i} is $\operatorname{gamma}\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

$$
X_{i}=\sum_{j=1}^{r_{i}} W_{i j}
$$

where $W_{i j}$ are independent exponential (λ) variables.

The argument of example 2 page 375 ispapsibly generalized. Since X_{i} is $\operatorname{gamma}\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

$$
X_{i}=\sum_{j=1}^{r_{i}} W_{i j}
$$

where $W_{i j}$ are independent exponential (λ) variables. Thus

The argument of example 2 page 375 ispapsibly generalized. Since X_{i} is $\operatorname{gamma}\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

$$
X_{i}=\sum_{j=1}^{r_{i}} W_{i j}
$$

where $W_{i j}$ are independent exponential (λ) variables. Thus

$$
\sum_{i=1}^{n} X_{i}
$$

The argument of example 2 page 375 ispapsibly generalized. Since X_{i} is $\operatorname{gamma}\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

$$
X_{i}=\sum_{j=1}^{r_{i}} W_{i j}
$$

where $W_{i j}$ are independent exponential (λ) variables. Thus

$$
\sum_{i=1}^{n} X_{i}=\sum_{i=1}^{n} \sum_{j=1}^{r_{i}} W_{i j}
$$

The argument of example 2 page 375 ispapsibith generalized. Since X_{i} is $\operatorname{gamma}\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

$$
X_{i}=\sum_{j=1}^{r_{i}} W_{i j}
$$

where $W_{i j}$ are independent exponential (λ) variables. Thus

$$
\sum_{i=1}^{n} X_{i}=\sum_{i=1}^{n} \sum_{j=1}^{r_{i}} W_{i j}
$$

a sum of $\sum_{i=1}^{n} r_{i}$ exponential (λ) random variables.

The argument of example 2 page 375 ispapsibly generalized. Since X_{i} is $\operatorname{gamma}\left(r_{i}, \lambda\right)$ distributed we can write X_{i} as

$$
X_{i}=\sum_{j=1}^{r_{i}} W_{i j}
$$

where $W_{i j}$ are independent exponential (λ) variables. Thus

$$
\sum_{i=1}^{n} X_{i}=\sum_{i=1}^{n} \sum_{j=1}^{r_{i}} W_{i j}
$$

a sum of $\sum_{i=1}^{n} r_{i}$ exponential (λ) random variables. The sum is gamma $\left(\sum_{i=1}^{n} r_{i}, \lambda\right)$ distributed.

