IMM - DTU 02405 Probability For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha) \underset{\text { diftribplation. }}{2004 \text {. }}$.

IMM - DTU
02405 Probability
For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha){ }_{\text {Bliquty }}^{2004-4 \beta \text { fintion. We denote the }}$ waiting time in queue i by X_{i}, and the total waiting time by Z.

IMM - DTU
02405 Probability
2004-4-15
 waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

IMM - DTU
02405 Probability
2004-4-15
 waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.
$f(t)$

IMM - DTU 02405 Probability
 waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u
$$

IMM - DTU 02405 Probability
For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$) We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u
$$

 waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$) We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathrm{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

Question b) See e.g. page 480 for the means $E\left(X_{i}\right)$ for the exponential variables.

IMM - DTU
For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$ eliqtyiblytion. We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

Question b) See e.g. page 480 for the means $E\left(X_{i}\right)$ for the exponential variables.

$$
E(Z)
$$

IMM - DTU
For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$ eliqtyiblytion. We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

Question b) See e.g. page 480 for the means $E\left(X_{i}\right)$ for the exponential variables.

$$
E(Z)=E\left(X_{1}\right)+E\left(X_{2}\right)
$$

IMM - DTU
For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$ eliqtyiblytion. We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

Question b) See e.g. page 480 for the means $E\left(X_{i}\right)$ for the exponential variables.

$$
E(Z)=E\left(X_{1}\right)+E\left(X_{2}\right)=\frac{1}{\alpha}+\frac{1}{\beta}
$$

For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$ eliqtyiblytion. We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

Question b) See e.g. page 480 for the means $E\left(X_{i}\right)$ for the exponential variables.

$$
E(Z)=E\left(X_{1}\right)+E\left(X_{2}\right)=\frac{1}{\alpha}+\frac{1}{\beta}
$$

Question c) Using the independence of X_{1} and X_{2} we have

IMM - DTU
For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$ eliqtyiblytion. We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

Question b) See e.g. page 480 for the means $E\left(X_{i}\right)$ for the exponential variables.

$$
E(Z)=E\left(X_{1}\right)+E\left(X_{2}\right)=\frac{1}{\alpha}+\frac{1}{\beta}
$$

Question c) Using the independence of X_{1} and X_{2} we have

$$
\operatorname{Var}(Z)
$$

For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$) We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

Question b) See e.g. page 480 for the means $E\left(X_{i}\right)$ for the exponential variables.

$$
E(Z)=E\left(X_{1}\right)+E\left(X_{2}\right)=\frac{1}{\alpha}+\frac{1}{\beta}
$$

Question c) Using the independence of X_{1} and X_{2} we have

$$
\operatorname{Var}(Z)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)
$$

For $\alpha=\beta$ we have the $\operatorname{Gamma}(2, \alpha)$ biqhyiblytion. We denote the waiting time in queue i by X_{i}, and the total waiting time by Z.
Question a) The distribution of the total waiting time Z is found using the density convolution formula page 372 for independent variables.

$$
f(t)=\int_{0}^{t} \alpha e^{-\alpha u} \beta e^{-\beta(t-u)} \mathbf{d} u=\alpha \beta e^{-\beta t} \int_{0}^{t} e^{u(\beta-\alpha)} \mathbf{d} u=\frac{\alpha \beta}{\beta-\alpha}\left(e^{-\alpha t}-e^{-\beta t}\right)
$$

Question b) See e.g. page 480 for the means $E\left(X_{i}\right)$ for the exponential variables.

$$
E(Z)=E\left(X_{1}\right)+E\left(X_{2}\right)=\frac{1}{\alpha}+\frac{1}{\beta}
$$

Question c) Using the independence of X_{1} and X_{2} we have

$$
\operatorname{Var}(Z)=\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)=\sqrt{\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}}
$$

The last equality follows from e.g. page 480.

