IMM - DTU	02405 Probability
	2003-11-19
	BFN/bfn
Question a) Let the coordinates of shot i be denoted by	(X, Y) The difference between

Question a) Let the coordinates of shot i be denoted by $(X_i,Y_i).$ The difference between two shots (X_2-X_1,Y_2-Y_1)

02405 Probability 2003-11-19 BFN/bfn

Question a) Let the coordinates of shot i be denoted by $(X_i,Y_i).$ The difference between two shots (X_2-X_1,Y_2-Y_1) is two independent normally distributed random variables with mean

02405 Probability 2003-11-19 BFN/bfn

Question a) Let the coordinates of shot i be denoted by $(X_i,Y_i).$ The difference between two shots (X_2-X_1,Y_2-Y_1) is two independent normally distributed random variables with mean 0

02405 Probability 2003-11-19 BFN/bfn

Question a) Let the coordinates of shot i be denoted by (X_i,Y_i) . The difference between two shots (X_2-X_1,Y_2-Y_1) is two independent normally distributed random variables with mean 0 and variance

02405 Probability 2003-11-19 BFN/bfn

Question a) Let the coordinates of shot i be denoted by (X_i, Y_i) . The difference between two shots $(X_2 - X_1, Y_2 - Y_1)$ is two independent normally distributed random variables with mean 0 and variance 2.

02405 Probability 2003-11-19 BFN/bfn

Question a) Let the coordinates of shot i be denoted by (X_i, Y_i) . The difference between two shots $(X_2 - X_1, Y_2 - Y_1)$ is two independent normally distributed random variables with mean 0 and variance 2. By a simple a scaling as in example 1 problem 2 page 361 we get

02405 Probability 2003-11-19 BFN/bfn

Question a) Let the coordinates of shot i be denoted by (X_i, Y_i) . The difference between two shots $(X_2 - X_1, Y_2 - Y_1)$ is two independent normally distributed random variables with mean 0 and variance 2. By a simple a scaling as in example 1 problem 2 page 361 we get E(D)

02405 Probability 2003-11-19 BFN/bfn

Question a) Let the coordinates of shot i be denoted by (X_i,Y_i) . The difference between two shots (X_2-X_1,Y_2-Y_1) is two independent normally distributed random variables with mean 0 and variance 2. By a simple a scaling as in example 1 problem 2 page 361 we get $E(D)=\sqrt{2}\sqrt{\frac{\pi}{2}}$

Question a) Let the coordinates of shot i be denoted by (X_i,Y_i) . The difference between two shots (X_2-X_1,Y_2-Y_1) is two independent normally distributed random variables with mean 0 and variance 2. By a simple a scaling as in example 1 problem 2 page 361 we get $E(D) = \sqrt{2}\sqrt{\frac{\pi}{2}} = \sqrt{\pi}$.

02405 Probability 2003-11-19 BFN/bfn

IMM - DTU		02405 Probability
		2003-11-19
		BFN/bfn

Question a) Let the coordinates of shot i be denoted by (X_i,Y_i) . The difference between two shots $(X_2 - X_1, Y_2 - Y_1)$ is two independent normally distributed random variables with mean 0 and variance 2. By a simple a scaling as in example 1 problem 2 page 361 we get $E(D) = \sqrt{2}\sqrt{\frac{\pi}{2}} = \sqrt{\pi}$.

Question b) We have $E(D^2)$

02405 Probability
2003-11-19
BFN/bfn

- Question a) Let the coordinates of shot i be denoted by (X_i, Y_i) . The difference between two shots $(X_2 X_1, Y_2 Y_1)$ is two independent normally distributed random variables with mean 0 and variance 2. By a simple a scaling as in example 1 problem 2 page 361 we get $E(D) = \sqrt{2}\sqrt{\frac{\pi}{2}} = \sqrt{\pi}$.
- Question b) We have $E(D^2) = 4$

02405 Probability 2003-11-19 BFN/bfn

- Question a) Let the coordinates of shot i be denoted by (X_i,Y_i) . The difference between two shots (X_2-X_1,Y_2-Y_1) is two independent normally distributed random variables with mean 0 and variance 2. By a simple a scaling as in example 1 problem 2 page 361 we get $E(D) = \sqrt{2}\sqrt{\frac{\pi}{2}} = \sqrt{\pi}$.
- Question b) We have $E(D^2) = 4$ thus Var(D)

02405 Probability 2003-11-19 BFN/bfn

- Question a) Let the coordinates of shot i be denoted by (X_i,Y_i) . The difference between two shots (X_2-X_1,Y_2-Y_1) is two independent normally distributed random variables with mean 0 and variance 2. By a simple a scaling as in example 1 problem 2 page 361 we get $E(D) = \sqrt{2}\sqrt{\frac{\pi}{2}} = \sqrt{\pi}$.
- Question b) We have $E(D^2) = 4$ thus $Var(D) = 4 \pi$.