IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) Let the coordinates of shot i be denoted by $\left(X_{i}, Y_{i}\right)$.

IMM - DTU
02405 Probability
2003-11-19
BFN/bfn
Question a) Let the coordinates of shot i be denoted by $\left(X_{i}, Y_{i}\right)$. The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$)

IMM - DTU

Question a) Let the coordinates of shot i be denoted by (X_{i}, Y_{i}). The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean

IMM - DTU

Question a) Let the coordinates of shot i be denoted by $\left(X_{i}, Y_{i}\right)$. The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0

IMM - DTU

Question a) Let the coordinates of shot i be denoted by (X_{i}, Y_{i}). The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance

IMM - DTU

Question a) Let the coordinates of shot i be denoted by $\left(X_{i}, Y_{i}\right)$. The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2.

IMM - DTU

Question a) Let the coordinates of shot i be denoted by (X_{i}, Y_{i}). The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2 . By a simple a scaling as in example 1 problem 2 page 361 we get

IMM - DTU

Question a) Let the coordinates of shot i be denoted by (X_{i}, Y_{i}). The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2 . By a simple a scaling as in example 1 problem 2 page 361 we get $E(D)$

IMM - DTU

Question a) Let the coordinates of shot i be denoted by (X_{i}, Y_{i}). The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2 . By a simple a scaling as in example 1 problem 2 page 361 we get $E(D)=\sqrt{2} \sqrt{\frac{\pi}{2}}$

IMM - DTU

Question a) Let the coordinates of shot i be denoted by (X_{i}, Y_{i}). The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2 . By a simple a scaling as in example 1 problem 2 page 361 we get $E(D)=\sqrt{2} \sqrt{\frac{\pi}{2}}=\sqrt{\pi}$.

IMM - DTU

Question a) Let the coordinates of shot i be denoted by $\left(X_{i}, Y_{i}\right)$. The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2 . By a simple a scaling as in example 1 problem 2 page 361 we get $E(D)=\sqrt{2} \sqrt{\frac{\pi}{2}}=\sqrt{\pi}$.
Question b) We have $E\left(D^{2}\right)$

IMM - DTU

Question a) Let the coordinates of shot i be denoted by $\left(X_{i}, Y_{i}\right)$. The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2 . By a simple a scaling as in example 1 problem 2 page 361 we get $E(D)=\sqrt{2} \sqrt{\frac{\pi}{2}}=\sqrt{\pi}$.
Question b) We have $E\left(D^{2}\right)=4$

IMM - DTU

Question a) Let the coordinates of shot i be denoted by $\left(X_{i}, Y_{i}\right)$. The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2 . By a simple a scaling as in example 1 problem 2 page 361 we get $E(D)=\sqrt{2} \sqrt{\frac{\pi}{2}}=\sqrt{\pi}$.
Question b) We have $E\left(D^{2}\right)=4$ thus $\operatorname{Var}(D)$

IMM - DTU

Question a) Let the coordinates of shot i be denoted by $\left(X_{i}, Y_{i}\right)$. The difference between two shots ($X_{2}-X_{1}, Y_{2}-Y_{1}$) is two independent normally distributed random variables with mean 0 and variance 2 . By a simple a scaling as in example 1 problem 2 page 361 we get $E(D)=\sqrt{2} \sqrt{\frac{\pi}{2}}=\sqrt{\pi}$.
Question b) We have $E\left(D^{2}\right)=4$ thus $\operatorname{Var}(D)=4-\pi$.

