

IMM - DTU
02405 Probability
 For a random point to be within radius r

IMM - DTU
02405 Probability
 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}.

We denote the radius of the circle by ${ }^{2003-10-17}$. For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

IMM - DTU
02405 Probability
We denote the radius of the circle by ${ }^{2003-10-17}$ BFNh $\mathrm{f}+\mathrm{P}$ rea of the circle is $\pi \rho^{2}$. For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)
$$

IMM - DTU
02405 Probability
2003-10-17
 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)
$$

 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)
 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)
$$

 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}
$$

 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

With R_{1} and R_{2} indpendent
 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

With R_{1} and R_{2} indpendent we have the joint density from (2) page 350
 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

With R_{1} and R_{2} indpendent we have the joint density from (2) page 350

$$
f\left(r_{1}, r_{2}\right)
$$

We denote the radius of the circle by A FNh f firea of the circle is $\pi \rho^{2}$ For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

With R_{1} and R_{2} indpendent we have the joint density from (2) page 350

$$
f\left(r_{1}, r_{2}\right)=\frac{4 r_{1} r_{2}}{\rho^{4}}
$$

 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

With R_{1} and R_{2} indpendent we have the joint density from (2) page 350

$$
f\left(r_{1}, r_{2}\right)=\frac{4 r_{1} r_{2}}{\rho^{4}}
$$

We now integrate over the set $r_{2}<\frac{r_{1}}{2}$ (page 349) to get
 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

With R_{1} and R_{2} indpendent we have the joint density from (2) page 350

$$
f\left(r_{1}, r_{2}\right)=\frac{4 r_{1} r_{2}}{\rho^{4}}
$$

We now integrate over the set $r_{2}<\frac{r_{1}}{2}$ (page 349) to get

$$
P\left(R_{2} \leq \frac{R_{1}}{2}\right)
$$

 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

With R_{1} and R_{2} indpendent we have the joint density from (2) page 350

$$
f\left(r_{1}, r_{2}\right)=\frac{4 r_{1} r_{2}}{\rho^{4}}
$$

We now integrate over the set $r_{2}<\frac{r_{1}}{2}$ (page 349) to get

$$
P\left(R_{2} \leq \frac{R_{1}}{2}\right)=\int_{0}^{\rho} \int_{0}^{\frac{r_{1}}{2}} \frac{4 r_{1} r_{2}}{\rho^{4}} \mathrm{~d} r_{2} \mathrm{~d} r_{1}
$$

 For a random point to be within radius r it has to be within the circle of radius r with area πr^{2}. We find the probability as the fraction of these two areas

$$
F_{R}(r)=P\left(R_{1} \leq r\right)=\frac{r^{2}}{\rho^{2}}
$$

with density (page 333)

$$
f_{R}(r)=\frac{\mathrm{d} F_{R}(r)}{\mathrm{d} r}=\frac{2 r}{\rho^{2}}
$$

With R_{1} and R_{2} indpendent we have the joint density from (2) page 350

$$
f\left(r_{1}, r_{2}\right)=\frac{4 r_{1} r_{2}}{\rho^{4}}
$$

We now integrate over the set $r_{2}<\frac{r_{1}}{2}$ (page 349) to get

$$
P\left(R_{2} \leq \frac{R_{1}}{2}\right)=\int_{0}^{\rho} \int_{0}^{\frac{r_{1}}{2}} \frac{4 r_{1} r_{2}}{\rho^{4}} \mathrm{~d} r_{2} \mathrm{~d} r_{1}=\frac{1}{2 \rho^{4}} \int_{0}^{\rho} r_{1}^{3} \mathrm{~d} r_{1}=\frac{1}{8}
$$

