IMM - DTU
02405 Probability
2003-10-29
BFN/bfn
Question a) The exercise is closely related to exercise 4.4.9 page 310,

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn
Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case.

IMM - DTU 02405 Probability
2003-10-29
BFN/bfn
Question a) The exercise is closely related to exercise 4.4 .9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

IMM - DTU 02405 Probability 2003-10-29
BFN/bfn
Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn
Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
Y=\sqrt{T}
$$

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn
Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
Y=\sqrt{T}, T=Y^{2}
$$

IMM - DTU 02405 Probability 2003-10-29 BFN/bfn
Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

IMM - DTU 02405 Probability 2003-10-29 BFN/bfn
Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}}
$$

IMM - DTU 02405 Probability 2003-10-29 BFN/bfn
Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}}
$$

$$
f_{Y}(y)
$$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y
$$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2},

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed. Thus the value of the integral is $\frac{1}{2 \lambda}$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
E(Y)
$$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)
$$

IMM - DTU

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z)
$$

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{aligned}
& E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
= & \sqrt{\lambda \pi} \frac{1}{2 \lambda}
\end{aligned}
$$

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4 .9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{aligned}
& E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
= & \sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}
\end{aligned}
$$

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4 .9 page 310 , as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed. Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323. Thus

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.
Thus

$$
U=1-e^{-\lambda X}
$$

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.
Thus

$$
U=1-e^{-\lambda X} \Rightarrow X
$$

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.
Thus

$$
U=1-e^{-\lambda X} \Rightarrow X=-\frac{1}{\lambda} \ln (1-U)
$$

IMM - DTU
02405 Probability
2003-10-29
BFN/bfn

Question a) The exercise is closely related to exercise 4.4 .9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.
Thus

$$
U=1-e^{-\lambda X} \Rightarrow X=-\frac{1}{\lambda} \ln (1-U)
$$

Now $1-U$ and U are identically distributed

IMM - DTU

> 02405 Probability 2003-10-29
> BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.
Thus

$$
U=1-e^{-\lambda X} \Rightarrow X=-\frac{1}{\lambda} \ln (1-U)
$$

Now $1-U$ and U are identically distributed such that we can generate an exponential X with $X=-\frac{1}{\lambda} \ln (U)$.

IMM - DTU

> 02405 Probability 2003-10-29
> BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.
Thus

$$
U=1-e^{-\lambda X} \Rightarrow X=-\frac{1}{\lambda} \ln (1-U)
$$

Now $1-U$ and U are identically distributed such that we can generate an exponential X with $X=-\frac{1}{\lambda} \ln (U)$. To generate a Weibull $(\alpha=2)$ distributed Y

IMM - DTU

> 02405 Probability 2003-10-29
> BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.
Thus

$$
U=1-e^{-\lambda X} \Rightarrow X=-\frac{1}{\lambda} \ln (1-U)
$$

Now $1-U$ and U are identically distributed such that we can generate an exponential X with $X=-\frac{1}{\lambda} \ln (U)$. To generate a Weibull $(\alpha=2)$ distributed Y we take the square root of X,

IMM - DTU

> 02405 Probability 2003-10-29
> BFN/bfn

Question a) The exercise is closely related to exercise 4.4.9 page 310, as it is the inverse problem in a special case. We apply the standard change of variable method page 304

$$
\begin{gathered}
Y=\sqrt{T}, T=Y^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{1}{\sqrt{t}} \\
f_{Y}(y)=2 \lambda \cdot y e^{-\lambda y^{2}}
\end{gathered}
$$

a Weibull distribution. See e.g. exercise 4.3.4 page 301 and exercise 4.4.9 page 310.

Question b)

$$
\int_{0}^{\infty} 2 \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y=\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathbf{d} y
$$

We note the similarity with the variance of an unbiased (zero mean) normal variable.

$$
\int_{-\infty}^{\infty} \lambda y^{2} e^{-\lambda y^{2}} \mathrm{~d} y=\lambda \int_{-\infty}^{\infty} y^{2} \sqrt{\frac{2 \pi}{2 \pi}} \sqrt{\frac{\frac{1}{2 \lambda}}{\frac{1}{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y=\lambda \sqrt{\frac{\pi}{\lambda}} \int_{-\infty}^{\infty} y^{2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\frac{1}{\sqrt{2 \lambda}}} e^{-\frac{1}{2} \frac{y^{2}}{2 \lambda}} \mathrm{~d} y
$$

the integral is the expected value of Z^{2}, where Z is normal $\left(0, \frac{1}{2 \lambda}\right)$ distributed.
Thus the value of the integral is $\frac{1}{2 \lambda}$ Finally we get

$$
\begin{gathered}
E(Y)=\sqrt{\lambda \pi} E\left(Z^{2}\right)=\sqrt{\lambda \pi} \operatorname{Var}(Z) \\
=\sqrt{\lambda \pi} \frac{1}{2 \lambda}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda}}=0.51 \quad \text { with } \lambda=3
\end{gathered}
$$

Question c) We apply the inverse distribution function method suggested page 320-323.
Thus

$$
U=1-e^{-\lambda X} \Rightarrow X=-\frac{1}{\lambda} \ln (1-U)
$$

Now $1-U$ and U are identically distributed such that we can generate an exponential X with $X=-\frac{1}{\lambda} \ln (U)$. To generate a Weibull $(\alpha=2)$ distributed Y we take the square root of X, thus $Y=\sqrt{-\frac{1}{\lambda} \ln (1-U)}$.

