IMM - DTU
02405 Probability
2003-10-15
$\mathrm{BFN} / \mathrm{bfn}$
First we introduce Y

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)$

IMM - DTU
02405 Probability
2003-10-15
First we introduce $Y=g(U)=U^{2}$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$.

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304.

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1,
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y},
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}} \quad 0<y<1
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}} \quad 0<y<1
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

$$
\begin{gathered}
f_{Y}(y)=\frac{1}{2 \sqrt{y}} \quad 0<y<1 \\
F_{U^{2}}(y)=P\left(U^{2} \leq y\right)=P(U \leq \sqrt{y})=\sqrt{y}
\end{gathered}
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

$$
\begin{gathered}
f_{Y}(y)=\frac{1}{2 \sqrt{y}} \quad 0<y<1 \\
F_{U^{2}}(y)=P\left(U^{2} \leq y\right)=P(U \leq \sqrt{y})=\sqrt{y}
\end{gathered}
$$

The last equality follows from the cumulative distribution function (CDF) of a Uniformly distributed random variable (page 487).

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

$$
\begin{gathered}
f_{Y}(y)=\frac{1}{2 \sqrt{y}} \quad 0<y<1 \\
F_{U^{2}}(y)=P\left(U^{2} \leq y\right)=P(U \leq \sqrt{y})=\sqrt{y}
\end{gathered}
$$

The last equality follows from the cumulative distribution function (CDF) of a Uniformly distributed random variable (page 487). The density is derived from the CDF by differentation (page 313) and

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

$$
\begin{gathered}
f_{Y}(y)=\frac{1}{2 \sqrt{y}} \quad 0<y<1 \\
F_{U^{2}}(y)=P\left(U^{2} \leq y\right)=P(U \leq \sqrt{y})=\sqrt{y}
\end{gathered}
$$

The last equality follows from the cumulative distribution function (CDF) of a Uniformly distributed random variable (page 487). The density is derived from the CDF by differentation (page 313) and

$$
f_{U^{2}}(y)
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

$$
\begin{gathered}
f_{Y}(y)=\frac{1}{2 \sqrt{y}} \quad 0<y<1 \\
F_{U^{2}}(y)=P\left(U^{2} \leq y\right)=P(U \leq \sqrt{y})=\sqrt{y}
\end{gathered}
$$

The last equality follows from the cumulative distribution function (CDF) of a Uniformly distributed random variable (page 487). The density is derived from the CDF by differentation (page 313) and

$$
f_{U^{2}}(y)=\frac{\mathrm{d} F_{U^{2}}(y)}{\mathrm{d} y}
$$

IMM - DTU
02405 Probability
2003-10-15
BFN/bfn
First we introduce $Y=g(U)=U^{2}$ and note that $g()$ is strictly increasing on $] 0,1[$. We then apply the formula in the box on page 304. In our case we have

$$
f_{X}(x)=1 \text { for } 0<x<1, \quad y=g(x)=x^{2}, \quad x=\sqrt{y}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x=2 \sqrt{y}
$$

Inserting in the formula

$$
\begin{gathered}
f_{Y}(y)=\frac{1}{2 \sqrt{y}} \quad 0<y<1 \\
F_{U^{2}}(y)=P\left(U^{2} \leq y\right)=P(U \leq \sqrt{y})=\sqrt{y}
\end{gathered}
$$

The last equality follows from the cumulative distribution function (CDF) of a Uniformly distributed random variable (page 487). The density is derived from the CDF by differentation (page 313) and

$$
f_{U^{2}}(y)=\frac{\mathrm{d} F_{U^{2}}(y)}{\mathrm{d} y}=\frac{1}{2 \sqrt{y}}, 0<y<1
$$

