IMM - DTU

02405 Probability 2005-10-29 BFN/bfn

We use the knowledge of the half-life to find λ from

IMM - DTU	02405 Probability
	2005-10-29
	BFN/bfn
We use the knowledge of the half-life to find .	λ from example 2 page 282, $\lambda = rac{\ln{(2)}}{1}$

IMM - DTU	02405 Probability
	2005-10-29
	BFN/bfn
We use the knowledge of the half-life to find λ from example.	mple 2 page 282, $\lambda = \frac{\ln(2)}{1}$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln{(2)}}{1}$ Question a) The probability that an atom survives at least 5 years is given by the survival function

IMM - DTU	02405 Probability
	2005-10-29
	BFN/bfn
We use the knowledge of the half-life to find λ	A from example 2 page 282, $\lambda = rac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279.

IMM - DTU

02405 Probability 2005-10-29 BFN/bfn

BFN/bfn We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T

IMM - DTU 02405 Probability 2005-10-29 BFN/bfn We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$ Question a) The probability that an atom suprives at least 5 years is given by the supervised of the set of

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

P(T > 5)

$$P(T > 5) = e^{-5\ln(2)}$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

02405 Probability 2005-10-29 $\mathsf{BFN}/\mathsf{bfn}$ We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with ${\cal T}$ denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let ${\it N}_t$ denote

02405 Probability 2005-10-29 $\mathsf{BFN}/\mathsf{bfn}$ We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$ Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with ${\cal T}$ denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving

02405 Probability 2005-10-29 $\mathsf{BFN}/\mathsf{bfn}$ We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$ Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with ${\cal T}$ denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t,

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be

02405 Probability 2005-10-29 $\mathsf{BFN}/\mathsf{bfn}$ We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$ Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question.

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln(2)})$,

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln(2)})$, where $n = N_0$ is the original number of atoms.

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln(2)})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary,

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t)$

02405 Probability 2005-10-29 BFN/bfn m.example 2 page 282 $\lambda = \frac{1}{2}$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln(2)})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln(2)}$.

02405 Probability 2005-10-29 $\mathsf{BFN}/\mathsf{bfn}$ We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$ Question a) The probability that an atom survives at least 5 years is given by the survival

function page 279. We get with
$$T$$
 denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln(2)})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t\ln{(2)}}$. We find $t_{10\%}$ as

02405 Probability 2005-10-29 $\mathsf{BFN}/\mathsf{bfn}$ We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin\left(n, e^{-t\ln{(2)}}\right)$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = n e^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

02405 Probability 2005-10-29 $\mathsf{BFN}/\mathsf{bfn}$ We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln (2)}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin\left(n, e^{-t\ln{(2)}}\right)$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = n e^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln{(2)}}$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10}$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln\left(2\right)} = \frac{n}{10} \Rightarrow t_{10\%}$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln(2)}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

1024

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

 $1024e^{-t^{\star}\ln{(2)}}$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

 $1024e^{-t^{\star}\ln\left(2\right)} = 1 \Rightarrow t^{\star}$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln{(2)}} = 1 \Rightarrow t^{\star} = \frac{\ln{(1024)}}{\ln{(2)}}$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as $P(N_{t^*} = 0)$.

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as $P(N_{t^{\star}} = 0)$. From the binomial distribution of $N_{t^{\star}}$ we get

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as $P(N_{t^{\star}} = 0)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$\left(\frac{1023}{1024}\right)^{1024}$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as $P(N_{t^*} = 0)$. From the binomial distribution of N_{t^*} we get

$$\left(\frac{1023}{1024}\right)^{1024} = 0.3677$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as $P(N_{t^{\star}} = 0)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$\left(\frac{1023}{1024}\right)^{1024} = 0.3677$$

or

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as $P(N_{t^{\star}} = 0)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$\left(\frac{1023}{1024}\right)^{1024} = 0.3677$$

or

$$\left(\frac{1023}{1024}\right)^{1024}$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as $P(N_{t^*} = 0)$. From the binomial distribution of N_{t^*} we get

$$\left(\frac{1023}{1024}\right)^{1024} = 0.3677$$

or

$$\left(\frac{1023}{1024}\right)^{1024} = \left(1 - \frac{1}{1024}\right)^{1024}$$

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda = \frac{\ln{(2)}}{1}$

Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$P(T > 5) = e^{-5\ln(2)} = \frac{1}{32}$$

Question b) If we let N_t denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_t \in bin(n, e^{-t \ln{(2)}})$, where $n = N_0$ is the original number of atoms. The expected value $E(N_t)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E(N_t) = ne^{-t \ln{(2)}}$. We find $t_{10\%}$ as , using the method on page 282 once more,

$$ne^{-t\ln(2)} = \frac{n}{10} \Rightarrow t_{10\%} = \frac{-\ln(0.1)}{\ln(2)}.$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (t^*) , we get

$$1024e^{-t^{\star}\ln(2)} = 1 \Rightarrow t^{\star} = \frac{\ln(1024)}{\ln(2)} = 10$$

Question d) This question can be formulated as $P(N_{t^*} = 0)$. From the binomial distribution of N_{t^*} we get

$$\left(\frac{1023}{1024}\right)^{1024} = 0.3677$$

or

$$\left(\frac{1023}{1024}\right)^{1024} = \left(1 - \frac{1}{1024}\right)^{1024} \tilde{=} e^{-1}$$