IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, λ

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279.

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)
$$

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}
$$

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t,

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability

IMM - DTU
02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question.

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$,

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms.

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary,

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)$

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$.

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}
$$

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10}
$$

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}
$$

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

IMM - DTU 02405 Probability 2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is 10 (

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}
$$

IMM - DTU 02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}
$$

IMM - DTU 02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}
$$

IMM - DTU 02405 Probability
2005-10-29
BFN/bfn
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as $P\left(N_{t^{\star}}=0\right)$.

IMM - DTU
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as $P\left(N_{t^{\star}}=0\right)$. From the binomial distribution of $N_{t^{\star}}$ we get

IMM - DTU
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as $P\left(N_{t^{\star}}=0\right)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$
\left(\frac{1023}{1024}\right)^{1024}
$$

IMM - DTU
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as $P\left(N_{t^{\star}}=0\right)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$
\left(\frac{1023}{1024}\right)^{1024}=0.3677
$$

IMM - DTU

We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279. We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as $P\left(N_{t^{\star}}=0\right)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$
\left(\frac{1023}{1024}\right)^{1024}=0.3677
$$

or

IMM - DTU
We use the knowledge of the half-life to find λ from example 2 page $282, \lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as $P\left(N_{t^{\star}}=0\right)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$
\left(\frac{1023}{1024}\right)^{1024}=0.3677
$$

or

$$
\left(\frac{1023}{1024}\right)^{1024}
$$

IMM - DTU
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as $P\left(N_{t^{\star}}=0\right)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$
\left(\frac{1023}{1024}\right)^{1024}=0.3677
$$

or

$$
\left(\frac{1023}{1024}\right)^{1024}=\left(1-\frac{1}{1024}\right)^{1024}
$$

IMM - DTU
We use the knowledge of the half-life to find λ from example 2 page 282, $\lambda=\frac{\ln (2)}{1}$
Question a) The probability that an atom survives at least 5 years is given by the survival function page 279 . We get with T denoting the life time of an atom

$$
P(T>5)=e^{-5 \ln (2)}=\frac{1}{32}
$$

Question b) If we let N_{t} denote the number of atoms surviving at time t, then the distribution of this random variable will be binomial with the probability found in the previous question. Thus $N_{t} \in \operatorname{bin}\left(n, e^{-t \ln (2)}\right)$, where $n=N_{0}$ is the original number of atoms. The expected value $E\left(N_{t}\right)$ of this binomial distribution is given page 476 or 479 in the distribution summary, such that $E\left(N_{t}\right)=n e^{-t \ln (2)}$. We find $t_{10 \%}$ as, using the method on page 282 once more,

$$
n e^{-t \ln (2)}=\frac{n}{10} \Rightarrow t_{10 \%}=\frac{-\ln (0.1)}{\ln (2)}
$$

Question c) Applying the same method to find the time where the expected number of atoms remaining of 1024 is $10\left(t^{\star}\right)$, we get

$$
1024 e^{-t^{\star} \ln (2)}=1 \Rightarrow t^{\star}=\frac{\ln (1024)}{\ln (2)}=10
$$

Question d) This question can be formulated as $P\left(N_{t^{\star}}=0\right)$. From the binomial distribution of $N_{t^{\star}}$ we get

$$
\left(\frac{1023}{1024}\right)^{1024}=0.3677
$$

or

$$
\left(\frac{1023}{1024}\right)^{1024}=\left(1-\frac{1}{1024}\right)^{1024} \tilde{=} e^{-1}
$$

