IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)
Question b) We apply the formula on page 263 for a density

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)
Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
P(-1 \leq X \leq 2)
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
P(-1 \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
P(-1 \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
P(-1 \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
\begin{aligned}
P(-1 & \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x \\
& =\left[\frac{1}{2(1-x)}\right]_{x=-1}^{x=0}+\left[-\frac{1}{2(1+x)}\right]_{x=0}^{x=2}
\end{aligned}
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
\begin{aligned}
P(-1 & \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x \\
& =\left[\frac{1}{2(1-x)}\right]_{x=-1}^{x=0}+\left[-\frac{1}{2(1+x)}\right]_{x=0}^{x=2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{2}-\frac{1}{6}
\end{aligned}
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
\begin{aligned}
P(-1 & \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x \\
& =\left[\frac{1}{2(1-x)}\right]_{x=-1}^{x=0}+\left[-\frac{1}{2(1+x)}\right]_{x=0}^{x=2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{2}-\frac{1}{6}=\frac{7}{12}
\end{aligned}
$$

Question c) The distribution is symmetric so

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
\begin{aligned}
P(-1 & \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x \\
& =\left[\frac{1}{2(1-x)}\right]_{x=-1}^{x=0}+\left[-\frac{1}{2(1+x)}\right]_{x=0}^{x=2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{2}-\frac{1}{6}=\frac{7}{12}
\end{aligned}
$$

Question c) The distribution is symmetric so

$$
P(|X|>1)
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
\begin{aligned}
P(-1 & \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x \\
& =\left[\frac{1}{2(1-x)}\right]_{x=-1}^{x=0}+\left[-\frac{1}{2(1+x)}\right]_{x=0}^{x=2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{2}-\frac{1}{6}=\frac{7}{12}
\end{aligned}
$$

Question c) The distribution is symmetric so

$$
P(|X|>1)=2 P(X>1)=
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
\begin{aligned}
P(-1 & \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x \\
& =\left[\frac{1}{2(1-x)}\right]_{x=-1}^{x=0}+\left[-\frac{1}{2(1+x)}\right]_{x=0}^{x=2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{2}-\frac{1}{6}=\frac{7}{12}
\end{aligned}
$$

Question c) The distribution is symmetric so

$$
P(|X|>1)=2 P(X>1)=2\left[-\frac{1}{2(1+x)}\right]_{x=1}^{x=\infty}
$$

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
\begin{aligned}
P(-1 & \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x \\
& =\left[\frac{1}{2(1-x)}\right]_{x=-1}^{x=0}+\left[-\frac{1}{2(1+x)}\right]_{x=0}^{x=2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{2}-\frac{1}{6}=\frac{7}{12}
\end{aligned}
$$

Question c) The distribution is symmetric so

$$
P(|X|>1)=2 P(X>1)=2\left[-\frac{1}{2(1+x)}\right]_{x=1}^{x=\infty}=\frac{1}{2}
$$

Question d) No.

IMM - DTU

02405 Probability 2003-10-13
BFN/bfn

Question a)

Question b) We apply the formula on page 263 for a density

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

We get

$$
\begin{aligned}
P(-1 & \leq X \leq 2)=\int_{-1}^{2} \frac{1}{2(1+|x|)^{2}} \mathrm{~d} x=\int_{-1}^{0} \frac{1}{2(1-x)^{2}} \mathrm{~d} x+\int_{0}^{2} \frac{1}{2(1+x)^{2}} \mathrm{~d} x \\
& =\left[\frac{1}{2(1-x)}\right]_{x=-1}^{x=0}+\left[-\frac{1}{2(1+x)}\right]_{x=0}^{x=2}=\frac{1}{2}-\frac{1}{4}+\frac{1}{2}-\frac{1}{6}=\frac{7}{12}
\end{aligned}
$$

Question c) The distribution is symmetric so

$$
P(|X|>1)=2 P(X>1)=2\left[-\frac{1}{2(1+x)}\right]_{x=1}^{x=\infty}=\frac{1}{2}
$$

Question d) No. (the integral $\int_{0}^{\infty} x \frac{1}{2(1+x)^{2}} \mathrm{~d} x$ does not exist).

