IMM - DTU 02405 Probability
2003-10-15
BFN/bfn
Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

IMM - DTU 02405 Probability 2003-10-15
BFN/bfn
Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

IMM - DTU
BFN/bfn
Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)
$$

IMM - DTU
BFN/bfn
Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

IMM - DTU

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

IMM - DTU

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x
$$

IMM - DTU

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

IMM - DTU

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}
$$

IMM - DTU

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\operatorname{Var}(X)
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}
$$

$$
E\left(X^{2}\right)
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{array}{r}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
\end{array}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}
\end{gathered}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

such that

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

such that

$$
\operatorname{Var}(X)
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

such that

$$
\operatorname{Var}(X)=\frac{30}{105}-\frac{1}{4}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

such that

$$
\operatorname{Var}(X)=\frac{30}{105}-\frac{1}{4}=\frac{1}{28}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

such that

$$
\operatorname{Var}(X)=\frac{30}{105}-\frac{1}{4}=\frac{1}{28}
$$

which can be verified page 478.

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

such that

$$
\operatorname{Var}(X)=\frac{30}{105}-\frac{1}{4}=\frac{1}{28}
$$

which can be verified page 478.

$$
S D\left(X_{3,3}\right)^{2}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

such that

$$
\operatorname{Var}(X)=\frac{30}{105}-\frac{1}{4}=\frac{1}{28}
$$

which can be verified page 478.

$$
S D\left(X_{3,3}\right)^{2}=\frac{3 \cdot 3}{(3+3)^{2}(3+3+1)}
$$

IMM - DTU

02405 Probability
2003-10-15
BFN/bfn

Question a) The integral of $f(x)$ over the range of X should be one (see e.g. page 263).

$$
\int_{0}^{1} x^{2}(1-x)^{2} \mathrm{~d} x=\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x
$$

using the binomial formula $(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$.

$$
\int_{0}^{1} x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=\sum_{i=0}^{2}\binom{2}{i} \int_{0}^{1}(-x)^{i+2} \mathrm{~d} x=\sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+3}}{i+3}\right]_{x=0}^{x=1}=\frac{1}{30}
$$

such that

$$
f(x)=30 \cdot x^{2}(1-x)^{2} \quad 0<x<1
$$

This is an example of the Beta distribution page 327,328,478.
Question b) We derive the mean

$$
\int_{0}^{1} x f(x) \mathrm{d} x=\int_{0}^{1} x 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+4}}{i+4}\right]_{x=0}^{x=1}=\frac{1}{2}
$$

which we could have stated directly due to the symmetry of $f(x)$ around $\frac{1}{2}$, or from page 478.
Question c) We apply the computational formula for variances as restated page 261.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2} 30 \cdot x^{2}\left(\sum_{i=0}^{2}\binom{2}{i}(-x)^{i}\right) \mathrm{d} x=30 \sum_{i=0}^{2}\binom{2}{i}(-1)^{i}\left[\frac{x^{i+5}}{i+5}\right]_{x=0}^{x=1}=\frac{30}{105}
\end{gathered}
$$

such that

$$
\operatorname{Var}(X)=\frac{30}{105}-\frac{1}{4}=\frac{1}{28}
$$

which can be verified page 478.

$$
S D\left(X_{3,3}\right)^{2}=\frac{3 \cdot 3}{(3+3)^{2}(3+3+1)}=\frac{1}{28}
$$

