IMM - DTU 02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour.

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black.

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$.

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus D

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with p

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

IMM - DTU
02405 Probability
2003-10-5
BFN/bfn
First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=
$$

IMM - DTU

02405 Probability
2003-10-5
BFN/bfn

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

IMM - DTU

02405 Probability
2003-10-5
BFN/bfn

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=
$$

IMM - DTU

02405 Probability
2003-10-5
BFN/bfn

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=
$$

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=
$$

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1
$$

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482.
Question c)

IMM - DTU

02405 Probability
2003-10-5
BFN/bfn

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482.
Question c)

$$
V(D)
$$

IMM - DTU

02405 Probability
2003-10-5
BFN/bfn

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482 .
Question c)

$$
V(D)=V(X+1)
$$

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482.
Question c)

$$
V(D)=V(X+1)=V(X)
$$

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482.
Question c)

$$
V(D)=V(X+1)=V(X)=\frac{1-p}{p^{2}}
$$

IMM - DTU

02405 Probability
2003-10-5
BFN/bfn

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482 .
Question c)

$$
V(D)=V(X+1)=V(X)=\frac{1-p}{p^{2}}=2,
$$

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482.
Question c)

$$
V(D)=V(X+1)=V(X)=\frac{1-p}{p^{2}}=2, \quad S D(D)=\sqrt{2}
$$

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482 .
Question c)

$$
V(D)=V(X+1)=V(X)=\frac{1-p}{p^{2}}=2, \quad S D(D)=\sqrt{2}
$$

from page 213

IMM - DTU

First we restate D : number of balls drawn to get two of the same colour. We draw one ball which is either red or black. Having drawn a ball of some colour the number of draws to get one of the same colour is geometrically distributed with probability $\frac{1}{2}$. Thus $D=X+1$ where X is geometrically distributed with $p=\frac{1}{2}$.
Question a)

$$
P(D=i)=p(1-p)^{i-2}, \quad p=2,3, \ldots
$$

Question b)

$$
E(D)=E(X+1)=E(X)+1=\frac{1}{p}+1=3
$$

from page 212 or 476,482 .
Question c)

$$
V(D)=V(X+1)=V(X)=\frac{1-p}{p^{2}}=2, \quad S D(D)=\sqrt{2}
$$

from page 213 or 476,482.

