We apply the Normal approximation

02405 Probability 2003-10-5 BFN/bfn

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X_i

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X_i denote the weight of the i'th passenger.

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X_i denote the weight of the i'th passenger. The total load W

IMM - DTU 02405 Probability

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X_i denote the weight of the i'th passenger. The total load W is $W = \sum_{i=1}^{30} X_i$.

02405 Probability 2003-10-5

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X_i denote the weight of the i'th passenger. The total load W is $W=\sum_{i=1}^{30} X_i$.

P(W > 5000)

02405 Probability 2003-10-5

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X_i denote the weight of the i'th passenger. The total load W is $W=\sum_{i=1}^{30} X_i$.

$$P(W > 5000) = 1 - \Phi\left(\frac{5000 - 30 \cdot 150}{55\sqrt{30}}\right)$$

02405 Probability 2003-10-5

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X_i denote the weight of the i'th passenger. The total load W is $W=\sum_{i=1}^{30} X_i$.

$$P(W > 5000) = 1 - \Phi\left(\frac{5000 - 30 \cdot 150}{55\sqrt{30}}\right) = 1 - \Phi(1.66)$$

02405 Probability 2003-10-5

We apply the Normal approximation (the Central Limit Theorem (p.196). Let X_i denote the weight of the i'th passenger. The total load W is $W=\sum_{i=1}^{30} X_i$.

$$P(W > 5000) = 1 - \Phi\left(\frac{5000 - 30 \cdot 150}{55\sqrt{30}}\right) = 1 - \Phi(1.66) = 0.0485$$