IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define the number of sixes appearing

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define the number of sixes appearing on three rolls.

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}$,

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}$,

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find

$$
P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)
$$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define the number of sixes appearing on three rolls. We find

$$
P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}
$$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn
Question a) Let X define the number of sixes appearing on three rolls. We find

$$
P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}, \text { and } P(X=3)=\frac{1}{6^{3}} .
$$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)
$$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{q}(X=x)
$$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}
$$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}
$$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}
$$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\square}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\square}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}$

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\square}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.
Question b) Let Y denote the number

IMM - DTU
02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$. Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.
Question b) Let Y denote the number of odd numbers

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$.
Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.
Question b) Let Y denote the number of odd numbers on three rolls,

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$.
Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.
Question b) Let Y denote the number of odd numbers on three rolls, then $Y \in$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$.
Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.
Question b) Let Y denote the number of odd numbers on three rolls, then $Y \in \operatorname{binomial}\left(3, \frac{1}{2}\right)$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$.
Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.
Question b) Let Y denote the number of odd numbers on three rolls, then $Y \in \operatorname{binomial}\left(3, \frac{1}{2}\right)$ thus $E(Y)$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$.
Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.
Question b) Let Y denote the number of odd numbers on three rolls, then $Y \in \operatorname{binomial}\left(3, \frac{1}{2}\right)$ thus $E(Y)=3 \cdot \frac{1}{2}$

IMM - DTU

02405 Probability
2004-5-16
BFN/bfn

Question a) Let X define the number of sixes appearing on three rolls. We find $P(X=0)=\left(\frac{5}{6}\right)^{3}, P(X=1)=3 \frac{5^{2}}{6^{3}}, P(X=2)=3 \frac{5}{6^{3}}$, and $P(X=3)=\frac{1}{6^{3}}$.
Using the definition of expectation page 163

$$
E(X)=\sum_{x=0}^{3} x \boldsymbol{\Phi}(X=x)=0 \cdot\left(\frac{5}{6}\right)^{3}+1 \cdot 3 \frac{5^{2}}{6^{3}}+2 \cdot 3 \frac{5}{6^{3}}+3 \cdot \frac{1}{6^{3}}=\frac{1}{2}
$$

or realizing that $X \in \operatorname{binomial}\left(3, \frac{1}{6}\right)$ example 7 page 169 we have $E(X)=3 \cdot \frac{1}{6}=\frac{1}{2}$.
Question b) Let Y denote the number of odd numbers on three rolls, then $Y \in \operatorname{binomial}\left(3, \frac{1}{2}\right)$ thus $E(Y)=3 \cdot \frac{1}{2}=\frac{3}{2}$.

