The probability in question is given by

The probability in question is given by the Binomial distribution evaluated with

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99).

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A.

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution.

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that $P\left(\cup_{i>\frac{n}{2}} A_{i}\right) \geq 0.99$

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that $P\left(\cup_{i>\frac{n}{2}} A_{i}\right) \geq 0.99 \Leftrightarrow P\left(\cup_{i \leq \frac{n}{2}} A_{i}\right) \leq 0.01$.

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that $P\left(\cup_{i>\frac{n}{2}} A_{i}\right) \geq 0.99 \Leftrightarrow P\left(\cup_{i \leq \frac{n}{2}} A_{i}\right) \leq 0.01$. Expressed differently $P\left(0 \leq\right.$ Number preferring $\left.B \leq \frac{n}{2}\right)$.

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that $P\left(\cup_{i>\frac{n}{2}} A_{i}\right) \geq 0.99 \Leftrightarrow P\left(\cup_{i \leq \frac{n}{2}} A_{i}\right) \leq 0.01$. Expressed differently $P\left(0 \leq\right.$ Number preferring $\left.B \leq \frac{n}{2}\right)$.

$$
\Phi\left(\frac{\frac{n}{2}+\frac{1}{2}-0.55 \cdot n}{\sqrt{n \cdot 0.55 \cdot 0.45}}\right) \leq
$$

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that $P\left(\cup_{i>\frac{n}{2}} A_{i}\right) \geq 0.99 \Leftrightarrow P\left(\cup_{i \leq \frac{n}{2}} A_{i}\right) \leq 0.01$. Expressed differently $P\left(0 \leq\right.$ Number preferring $\left.B \leq \frac{n}{2}\right)$.

$$
\Phi\left(\frac{\frac{n}{2}+\frac{1}{2}-0.55 \cdot n}{\sqrt{n \cdot 0.55 \cdot 0.45}}\right) \leq 0.99
$$

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that $P\left(\cup_{i>\frac{n}{2}} A_{i}\right) \geq 0.99 \Leftrightarrow P\left(\cup_{i \leq \frac{n}{2}} A_{i}\right) \leq 0.01$. Expressed differently $P\left(0 \leq\right.$ Number preferring $\left.B \leq \frac{n}{2}\right)$.

$$
\Phi\left(\frac{\frac{n}{2}+\frac{1}{2}-0.55 \cdot n}{\sqrt{n \cdot 0.55 \cdot 0.45}}\right) \leq 0.99
$$

Thus

$$
\frac{\frac{n}{2}+\frac{1}{2}-0.55 \cdot n}{\sqrt{n \cdot 0.55 \cdot 0.45}} \leq
$$

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that $P\left(\cup_{i>\frac{n}{2}} A_{i}\right) \geq 0.99 \Leftrightarrow P\left(\cup_{i \leq \frac{n}{2}} A_{i}\right) \leq 0.01$. Expressed differently $P\left(0 \leq\right.$ Number preferring $\left.B \leq \frac{n}{2}\right)$.

$$
\Phi\left(\frac{\frac{n}{2}+\frac{1}{2}-0.55 \cdot n}{\sqrt{n \cdot 0.55 \cdot 0.45}}\right) \leq 0.99
$$

Thus

$$
\frac{\frac{n}{2}+\frac{1}{2}-0.55 \cdot n}{\sqrt{n \cdot 0.55 \cdot 0.45}} \leq-2.33
$$

IMM - DTU
02405 Probability
2005-2-20
BFN/bfn
The probability in question is given by the Binomial distribution evaluated with the Normal approximation (boxed result page 99). Let A_{i} define the event that i voters in the sample prefer A. Then $P\left(A_{i}\right)$ is given by the $\operatorname{Bin}(n, 0.55)$ distribution. We want to determine n such that $P\left(\cup_{i>\frac{n}{2}} A_{i}\right) \geq 0.99 \Leftrightarrow P\left(\cup_{i \leq \frac{n}{2}} A_{i}\right) \leq 0.01$. Expressed differently $P\left(0 \leq\right.$ Number preferring $\left.B \leq \frac{n}{2}\right)$.

$$
\Phi\left(\frac{\frac{n}{2}+\frac{1}{2}-0.55 \cdot n}{\sqrt{n \cdot 0.55 \cdot 0.45}}\right) \leq 0.99
$$

Thus

$$
\frac{\frac{n}{2}+\frac{1}{2}-0.55 \cdot n}{\sqrt{n \cdot 0.55 \cdot 0.45}} \leq-2.33 \Rightarrow n>557
$$

Pitman gets 537 ignoring the continuity approximation.

