IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i}

IMM - DTU
02405 Probability
2006-9-29
$\mathrm{BFN} / \mathrm{bfn}$
We define the events S_{i} that i passengers show up.

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation

IMM - DTU

02405 Probability
2006-9-29
BFN/bfn

We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi(
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi(300+
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(300+\frac{1}{2}\right.
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{}\right.
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324}}\right.
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot}}\right.
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1}}\right.
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=0.0495
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=0.0495
$$

Question b) Increase;

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=0.0495
$$

Question b) Increase; the relative variability increases.

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=0.0495
$$

Question b) Increase; the relative variability increases.
Question c)
$P($ More than 150 pairs show up $)=$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=0.0495
$$

Question b) Increase; the relative variability increases.
Question c)

$$
P(\text { More than } 150 \text { pairs show up })=1-\Phi\left(\frac{150+\frac{1}{2}-0.9 \cdot 162}{}\right.
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=0.0495
$$

Question b) Increase; the relative variability increases.
Question c)
$P($ More than 150 pairs show up $)=1-\Phi\left(\frac{150+\frac{1}{2}-0.9 \cdot 162}{\sqrt{162 \cdot 0.1 \cdot 0.9}}\right)=$

IMM - DTU

02405 Probability
2006-9-29
BFN/bfn

We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=0.0495
$$

Question b) Increase; the relative variability increases.
Question c)

$$
P(\text { More than } 150 \text { pairs show up })=1-\Phi\left(\frac{150+\frac{1}{2}-0.9 \cdot 162}{\sqrt{162 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.23)=
$$

IMM - DTU
02405 Probability
2006-9-29
BFN/bfn
We define the events S_{i} that i passengers show up. The probability of the event S_{i} is given by the Binomial distribution, and can be approximated using the normal approximation Question a)
$P($ More than 300 passengers show up $)=1-P($ At most 300 passengers show up $)=$

$$
1-\Phi\left(\frac{300+\frac{1}{2}-0.9 \cdot 324}{\sqrt{324 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.65)=0.0495
$$

Question b) Increase; the relative variability increases.
Question c)

$$
P(\text { More than } 150 \text { pairs show up })=1-\Phi\left(\frac{150+\frac{1}{2}-0.9 \cdot 162}{\sqrt{162 \cdot 0.1 \cdot 0.9}}\right)=1-\Phi(1.23)=0.1093
$$

