IMM - DTU
02405 Probability
2003-9-18
We define events $B i$
BFN/bfn

IMM - DTU
02405 Probability
2003-9-18
$\mathrm{BFN} / \mathrm{bfn}$
We define events $B i$ that the man hits the bull's eye exactly i times.

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)
$$

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)
$$

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} 0.7^{4} 0.3^{4}=
$$

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} 0.7^{4} 0.3^{4}=0.1361
$$

Question b)

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} 0.7^{4} 0.3^{4}=0.1361
$$

Question b)

$$
P\left(B 4 \mid \cup_{i=2}^{8} B_{i}\right)
$$

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} 0.7^{4} 0.3^{4}=0.1361
$$

Question b)

$$
P\left(B 4 \mid \cup_{i=2}^{8} B_{i}\right)=\frac{P\left(\left(B 4 \cap\left(\cup_{i=2}^{8} B_{i}\right)\right)\right.}{P\left(\cup_{i=2}^{8} B_{i}\right)}
$$

IMM - DTU
02405 Probability
2003-9-18
BFN/bfn
We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} 0.7^{4} 0.3^{4}=0.1361
$$

Question b)

$$
P\left(B 4 \mid \cup_{i=2}^{8} B_{i}\right)=\frac{P\left(\left(B 4 \cap\left(\cup_{i=2}^{8} B_{i}\right)\right)\right.}{P\left(\cup_{i=2}^{8} B_{i}\right)}=\frac{P(B 4)}{1-P(B 0)-P(B 1)}=
$$

IMM - DTU

We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} 0.7^{4} 0.3^{4}=0.1361
$$

Question b)

$$
P\left(B 4 \mid \cup_{i=2}^{8} B_{i}\right)=\frac{P\left(\left(B 4 \cap\left(\cup_{i=2}^{8} B_{i}\right)\right)\right.}{P\left(\cup_{i=2}^{8} B_{i}\right)}=\frac{P(B 4)}{1-P(B 0)-P(B 1)}==0.1363
$$

Question c)

IMM - DTU

We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} 0.7^{4} 0.3^{4}=0.1361
$$

Question b)

$$
P\left(B 4 \mid \cup_{i=2}^{8} B_{i}\right)=\frac{P\left(\left(B 4 \cap\left(\cup_{i=2}^{8} B_{i}\right)\right)\right.}{P\left(\cup_{i=2}^{8} B_{i}\right)}=\frac{P(B 4)}{1-P(B 0)-P(B 1)}==0.1363
$$

Question c)

$$
\binom{6}{2} 0.7^{3} 0.3^{4}
$$

IMM - DTU

We define events $B i$ that the man hits the bull's eye exactly i times. The probabilities of the events $B i$ is given by the Binomial distribution

$$
P(B i)=\binom{8}{i} 0.7^{i} 0.3^{8-i}
$$

Question a) The probability of the event

$$
P(B 4)=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} 0.7^{4} 0.3^{4}=0.1361
$$

Question b)

$$
P\left(B 4 \mid \cup_{i=2}^{8} B_{i}\right)=\frac{P\left(\left(B 4 \cap\left(\cup_{i=2}^{8} B_{i}\right)\right)\right.}{P\left(\cup_{i=2}^{8} B_{i}\right)}=\frac{P(B 4)}{1-P(B 0)-P(B 1)}==0.1363
$$

Question c)

$$
\binom{6}{2} 0.7^{3} 0.3^{4}=0.0595
$$

