IMM - DTU
02405 Probability
2006-3-9
BFN/bfn
Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)\right.$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)\right.$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$ as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)
$$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$ as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)
$$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.
Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)$
The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)$
The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)$
The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)$
The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A.

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)$
The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)$
The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.
Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations $X_{i}>X_{i+1}$ will be violoated. (for $i=n$ the relation is $X_{n}>X_{1}$).

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations $X_{i}>X_{i+1}$ will be violoated. (for $i=n$ the relation is $X_{n}>X_{1}$).

Question e)

$$
P(X>Y)
$$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations $X_{i}>X_{i+1}$ will be violoated. (for $i=n$ the relation is $X_{n}>X_{1}$).

Question e)

$$
P(X>Y)=p_{1}+\left(1-p_{1}\right)\left(1-p_{2}\right), P(Y>Z)
$$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations $X_{i}>X_{i+1}$ will be violoated. (for $i=n$ the relation is $X_{n}>X_{1}$).

Question e)

$$
P(X>Y)=p_{1}+\left(1-p_{1}\right)\left(1-p_{2}\right), P(Y>Z)=p_{2}, P(Z>X)
$$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations $X_{i}>X_{i+1}$ will be violoated. (for $i=n$ the relation is $X_{n}>X_{1}$).

Question e)

$$
P(X>Y)=p_{1}+\left(1-p_{1}\right)\left(1-p_{2}\right), P(Y>Z)=p_{2}, P(Z>X)=1-p_{1}
$$

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations $X_{i}>X_{i+1}$ will be violoated. (for $i=n$ the relation is $X_{n}>X_{1}$).

Question e)

$P(X>Y)=p_{1}+\left(1-p_{1}\right)\left(1-p_{2}\right), P(Y>Z)=p_{2}, P(Z>X)=1-p_{1}$
We can achieve $p=P(X>Y)=P(Y>Z)=P(Z>X)$ for p_{1}

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.
Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations $X_{i}>X_{i+1}$ will be violoated. (for $i=n$ the relation is $X_{n}>X_{1}$).

Question e)

$P(X>Y)=p_{1}+\left(1-p_{1}\right)\left(1-p_{2}\right), P(Y>Z)=p_{2}, P(Z>X)=1-p_{1}$
We can achieve $p=P(X>Y)=P(Y>Z)=P(Z>X)$ for $p_{1}=\frac{3-\sqrt{5}}{2}$ and p_{2}

Solution for review exercise 24 (chapter 3) in Pitman

Question a) Following the hint, we write down the permutations of $\{1,2,3\}$

$X=x$	$Y=y$	$Z=z$	$I(X>Y)$	$I(Y>Z)$	$I(Z>X)$
1	2	3	0	0	1
1	3	2	0	1	1
2	1	3	1	0	1
2	3	1	0	1	0
3	1	2	1	0	0
3	2	1	1	1	0

By picking the three sequences $\{1,3,2\},\{2,1,3\},\{3,2,1\}$ and assigning equal probability $\left(\frac{1}{3}\right)$ to each of them we get
$P(X>Y)=P\left((X, Y, Z) \in\{\{2,1,3\},\{3,2,1\}\}=\frac{2}{3}, P(Y>Z)=\frac{2}{3}, P(Z>X)=\frac{2}{3}\right.$
as we wanted to show.

Question b)

$$
P(X>Y)+P(Y>Z)+P(Z>X)=E\left(I_{X>Y}\right)+E\left(I_{Y>Z}\right)+E\left(I_{Z>X}\right)=E\left(I_{X>Y}+I_{Y>Z}+I_{Z>X}\right)
$$

The sum of $I_{X>Y}+I_{Y>Z}+I_{Z>Z}$ can not be greater than 2, thus the smallest of the three probabilities $P(X>Y), P(Y>Z), P(Z>X)$ can not exceed $\frac{2}{3}$.

Question c) By a proper mixture of the preferences A for B, B for C, and C for A. Assume that the people in the survey are equally divided among the three possible rankings.

Question d) We assign equal probability ($\frac{1}{n}$) to the permuations

$$
\{n, n-1, \ldots, 2,1\},\{1, n, n-1, \ldots, 3,2\}, \ldots,\{n-1, n-2, \ldots, 1, n\}
$$

In the sequences $X_{1}, X_{2}, \ldots, X_{n}$, only one of the relations $X_{i}>X_{i+1}$ will be violoated. (for $i=n$ the relation is $X_{n}>X_{1}$).

Question e)

$P(X>Y)=p_{1}+\left(1-p_{1}\right)\left(1-p_{2}\right), P(Y>Z)=p_{2}, P(Z>X)=1-p_{1}$
We can achieve $p=P(X>Y)=P(Y>Z)=P(Z>X)$ for $p_{1}=\frac{3-\sqrt{5}}{2}$ and $p_{2}=\frac{\sqrt{5}-1}{2}$.

