Solution for review exercise 20 (chapter 5) in Pitman

Question a) This is example 3 page 317. A rederivation gives us

$$
P\left(T_{\min } \leq t\right)=1-P\left(T_{\min }>t\right)=1-P\left(T_{1}>t, T_{2}>t\right)
$$

with T_{1} and T_{2} independent we get

$$
P\left(T_{\min } \leq t\right)=1-P\left(T_{1}>t\right) P\left(T_{2}>t\right)
$$

now inserting the exponential survival function page 279 we get

$$
P\left(T_{\min } \leq t\right)=1-\left(1-\left(1-e^{-\lambda_{1} t}\right)\right)\left(1-\left(1-e^{-\lambda_{2} t}\right)\right)=1-e^{-\left(\lambda_{1}+\lambda_{2}\right) t}
$$

the cumulative distribution function of an exponentially distributed random variable with parameter $\lambda_{1}+\lambda_{2}$.

Question b) This question is Example 2 page 352. A slightly different handling of the integrals gives us

$$
\begin{gathered}
P\left(T_{1}<T_{2}\right)=\int_{0}^{\infty} \int_{t_{1}}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{1}} \lambda_{2} e^{-\lambda_{2} t_{2}} \mathrm{~d} t_{2} \mathrm{~d} t_{1} \\
=\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{1}} e^{-\lambda_{2} t_{1}} \mathrm{~d} t_{1}=\int_{0}^{\infty} f_{T_{1}}\left(t_{1}\right) P\left(T_{2}>t_{1}\right) \mathrm{d} t_{1}
\end{gathered}
$$

which is an application of the rule of averaged conditional probability (page 41) for a continuous density. The general result is stated page 417 as the Integral Conditioning Formula. We get

$$
P\left(T_{1}<T_{2}\right)=\int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{1}} e^{-\lambda_{2} t_{1}} \mathrm{~d} t_{1}=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
$$

Question c) Consider

$$
P\left(T_{\min }>t \mid X_{\min }=2\right)=P\left(T_{1}>t \mid T_{2}>T_{1}\right)=\frac{P\left(T_{1}>t, T_{2}>T_{1}\right)}{P\left(T_{2}>T_{1}\right)}=\frac{P\left(T_{1}>t, T_{2}>T_{1}\right)}{P\left(X_{\min }=2\right)}
$$

We evaluate the probability in the denominator by integrating the joint density over a proper region (page 349), similarly to example 2 page 352

$$
P\left(T_{1}>t, T_{2}>T_{1}\right)=\int_{t}^{\infty} \int_{t_{1}}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{1}} \lambda_{2} e^{-\lambda_{2} t_{2}} \mathrm{~d} t_{2} \mathrm{~d} t_{1}
$$

$$
=\int_{t}^{\infty} \lambda_{1} e^{-\lambda_{1} t_{1}} e^{-\lambda_{2} t_{1}} \mathrm{~d} t_{1}=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} e^{-\left(\lambda_{1}+\lambda_{2}\right) t}
$$

By inserting back we finally get

$$
P\left(T_{\min }>t \mid X_{\min }=2\right)=e^{-\left(\lambda_{1}+\lambda_{2}\right) t}=P\left(T_{\min }>t\right)
$$

such that $T_{\text {min }}$ and $X_{\text {min }}$ are independent.
Question d) We can define $X_{\min }=i$ whenever $T_{\min }=T_{i}$. Then $P\left(X_{\min }=i\right)=$ $\frac{\lambda_{i}}{\lambda_{1}+\cdots+\lambda_{n}}$, and $T_{\min }$ and $X_{\text {min }}$ are independent.

